

Lecture Notes in Computer Science 4346
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Luboš Brim Boudewijn Haverkort
Martin Leucker Jaco van de Pol (Eds.)

Formal Methods:
Applications
and Technology

11th International Workshop, FMICS 2006
and 5th International Workshop, PDMC 2006
Bonn, Germany, August 26-27, and August 31, 2006
Revised Selected Papers

13

Volume Editors

Luboš Brim
Masaryk University
Botanicka 68a, 602 00 Brno, Czech Republic
E-mail: brim@fi.muni.cz

Boudewijn Haverkort
University of Twente
P.O. Box 217, 7500AE Enschede, The Netherlands
E-mail: brh@cs.utwente.nl

Martin Leucker
Technische Universität München
Boltzmannstr. 3, 85748 Garching, Germany
E-mail: leucker@in.tum.de

Jaco van de Pol
Centrum voor Wiskunde en Informatica, SEN 2
P.O. Box 94079, 1090 GB Amsterdam, The Netherlands
E-mail: Jaco.van.de.Pol@cwi.nl

Library of Congress Control Number: 2007921124

CR Subject Classification (1998): D.2.4, D.2, D.3, C.3, F.3

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-70951-7 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-70951-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12021901 06/3142 5 4 3 2 1 0

Preface

These are the joint final proceedings of the 11th International Workshop on
Formal Methods for Industrial Critical Systems (FMICS 2006) and the fifth
International Workshop on Parallel and Distributed Methods in Verification
(PDMC 2006). Both workshops were organized as satellite events of CONCUR
2006, the 17th International Conference on Concurrency Theory that was orga-
nized in Bonn, August 2006.

The FMICS workshop continued successfully the aim of the FMICS working
group – to promote the use of formal methods for industrial applications, by
supporting research in this area and its application in industry. The emphasis
in these workshops is on the exchange of ideas between researchers and practi-
tioners, in both industry and academia.

This year the Program Committee received a record number of submissions.
The 16 accepted regular contributions and 2 accepted tool papers, selected out
of a total of 47 submissions, cover formal methodologies for handling large state
spaces, model-based testing, formal description and analysis techniques as well
as a range of applications and case studies.

The workshop program included two invited talks, by Anna Slobodova from
Intel on “Challenges for Formal Verification in an Industrial Setting” and by
Edward A. Lee from the University of California at Berkeley on “Making Con-
currency Mainstream.” The former full paper can be found in this volume.

Following the tradition of previous workshops, the European Association of
Software Science and Technology (EASST) supported a best paper award. This
award was granted to Michael Weber and Moritz Hammer for their excellent
paper “‘To Store or Not To Store’ Reloaded: Reclaiming Memory on Demand.”

The primary goal of the PDMC workshop series is to present and discuss
recent developments in the young area of parallel and distributed methods in
verification. Several verification techniques, ranging over model checking, equiv-
alence checking, theorem proving, constraint solving and dependability analysis
are addressed by the PDMC community. Verification problems are usually very
demanding tasks, especially because the systems that we build and want to verify
become increasingly complex.

On the other hand, parallel and distributed computing machinery is widely
available. Algorithms and tools must be developed to use this hardware optimally
for our verification tasks. Traditionally, we studied algorithms for homogeneous
situations, such as parallel shared-memory computers and distributed clusters of
PCs. Currently, the emphasis is shifting towards heterogeneous GRIDs. But even
modern desktop PCs are quite heterogeneous, consisting of multiple core proces-
sors, various memory devices and cache levels, all with their own performance
characteristics.

VI Preface

This year’s PDMC had nine submissions; six papers were selected for pre-
sentation, and four papers were accepted for publication in this volume. In ad-
dition, Luboš Brim from Masaryk University, Brno, gave an invited lecture on
“Distributed Verification: Exploring the Power of Raw Computing Power.” The
full paper can also be found in this volume.

We would like to thank all authors for their submissions. We would also like
to thank the members of both Program Committees, and the additional referees,
for their timely reviewing and lively participation in the subsequent discussion—
the quality of the contributions in this volume are also due to their efforts and
expertise.

The organizers wish to thank CONCUR for hosting the FMICS and PDMC
2006 workshops and taking care of many administrative aspects, and ERCIM for
its financial support of FMICS. Additionally, the organizers would like to thank
the EASST (European Association of Software Science and Technology), the
Faculty of Informatics, Masaryk University Brno and the Technical University
Munich, the CWI (Center of Mathematics and Computer Science, Amsterdam)
and the University of Twente for supporting these events.

December 2006 Luboš Brim
Boudewijn R. Haverkort

Martin Leucker
Jaco van de Pol

Organization

FMICS

Program Chairs

Luboš Brim Masaryk University Brno, Czech Republic
Martin Leucker Technical University of Munich, Germany

Program Committee

Rance Cleaveland University of Maryland, USA
Wan Fokkink Vrije Universiteit Amsterdam and CWI, The

Netherlands
Stefania Gnesi ISTI-CNR, Italy
Susanne Graf VERIMAG, France
David Harel Weizmann Institute of Science, Israel
Klaus Havelund Kestrel Technology, USA
Thomas A. Henzinger EPFL, Switzerland
Leszek Holenderski Philips Research, The Netherlands
Stefan Kowalewski RWTH Aachen University, Germany
Marta Kwiatkowska University of Birmingham, UK
Salvatore La Torre Universitá degli Studi di Salerno, Italy
Tiziana Margaria University of Göttingen, Germany
Radu Mateescu INRIA Rhône-Alpes and ENS Lyon, France
Doron Peled University of Warwick, UK
Ernesto Pimentel University of Malaga, Spain
Andreas Podelski Max-Planck-Institut für Informatik, Germany
Don Sannella University of Edinburgh, UK
Joseph Sifakis VERIMAG, France

PDMC

Program Chairs

Boudewijn Haverkort University of Twente, The Netherlands
Jaco van de Pol CWI Amsterdam, The Netherlands

Program Committee

Gerd Behrmann Aalborg University, Denmark
Ivana Černá Masaryk University Brno, Czech Republic
Gianfranco Ciardo University of California at Riverside, USA
Joerg Denzinger University of Calgary, Canada

VIII Organization

Hubert Garavel INRIA Rhône-Alpes, France
Orna Grumberg Technion, Haifa, Israel
William Knottenbelt Imperial College, London, UK
Marta Kwiatkowska University of Birmingham, UK
Martin Leucker Technical University of Munich, Germany

Referees (FMICS and PDMC)

C. Artho
Y. Atir
R. Atkey
J. Barnat
M. ter Beek
M. van der Bijl
B. Bollig
L. Bozzelli
A. Bucchiarone
D. Calvanese
M. V. Cengarle

I. Černá
F. Ciesinski
M. Faella
A. Fantechi
M. Felici
A. J. Fernandez
M. Fruth
N. Geisweiller
A. Goldberg
A. Idani
C. Joubert

M. Kuntz
F. Lang
P. Lopez
K. MacKenzie
P. Maier
S. Maoz
F. Mazzanti
R. Merom
A. Murano
G. Norman
M. Parente

D. Parker
G. Parlato
G. Salaün
W. Serwe
F. Sorrentino
J. Tenzer
A. Venet
A. Wijs
T. Willemse
V. Wolf

Table of Contents

Invited Contributions

Challenges for Formal Verification in Industrial Setting 1
Anna Slobodová

Distributed Verification: Exploring the Power of Raw
Computing Power . 23

Luboš Brim

FMICS

An Easy-to-Use, Efficient Tool-Chain to Analyze the Availability of
Telecommunication Equipment . 35

Kai Lampka, Markus Siegle, and Max Walter

“To Store or Not To Store” Reloaded: Reclaiming Memory
on Demand . 51

Moritz Hammer and Michael Weber

Discovering Symmetries . 67
Hassen Säıdi

On Combining Partial Order Reduction with Fairness Assumptions 84
Luboš Brim, Ivana Černá, Pavel Moravec, and Jǐŕı Šimša

Test Coverage for Loose Timing Annotations . 100
C. Helmstetter, F. Maraninchi, and L. Maillet-Contoz

Model-Based Testing of a WAP Gateway: An Industrial Case-Study . . . 116
Anders Hessel and Paul Pettersson

Heuristics for ioco-Based Test-Based Modelling . 132
Tim A.C. Willemse

Verifying VHDL Designs with Multiple Clocks in SMV 148
A. Smrčka, V. Řehák, T. Vojnar, D. Šafránek,
P. Matoušek, and Z. Řehák

Verified Design of an Automated Parking Garage . 165
Aad Mathijssen and A. Johannes Pretorius

Evaluating Quality of Service for Service Level Agreements 181
Allan Clark and Stephen Gilmore

X Table of Contents

Simulation-Based Performance Analysis of a Medical Image-Processing
Architecture . 195

P.J.L. Cuijpers and A.V. Fyukov

Blasting Linux Code . 211
Jan Tobias Mühlberg and Gerald Lüttgen

A Finite State Modeling of AFDX Frame Management Using Spin 227
Indranil Saha and Suman Roy

UML 2.0 State Machines: Complete Formal Semantics Via Core State
Machines . 244

Harald Fecher and Jens Schönborn

Automated Incremental Synthesis of Timed Automata 261
Borzoo Bonakdarpour and Sandeep S. Kulkarni

SAT-Based Verification of LTL Formulas . 277
Wenhui Zhang

jmle: A Tool for Executing JML Specifications Via Constraint
Programming . 293

Ben Krause and Tim Wahls

Goanna—A Static Model Checker . 297
Ansgar Fehnker, Ralf Huuck, Patrick Jayet,
Michel Lussenburg, and Felix Rauch

PDMC

Parallel SAT Solving in Bounded Model Checking . 301
Erika Ábrahám, Tobias Schubert, Bernd Becker,
Martin Fränzle, and Christian Herde

Parallel Algorithms for Finding SCCs in Implicitly Given Graphs 316
Jǐŕı Barnat and Pavel Moravec

Can Saturation Be Parallelised? – On the Parallelisation of a Symbolic
State-Space Generator . 331

Jonathan Ezekiel, Gerald Lüttgen, and Radu Siminiceanu

Distributed Colored Petri Net Model-Checking with Cyclades 347
Christophe Pajault and Jean-François Pradat-Peyre

Author Index . 363

Challenges for Formal Verification in Industrial
Setting

Anna Slobodová

Intel
anna.slobodova@intel.com

Abstract. Commercial competition is forcing computer companies to
get better products to market more rapidly, and therefore the time for
validation is shrinking relative to the complexity of microprocessor de-
signs. Improving time-to-market performance cannot be solved by just
growing the size of design and validation teams. Design process automa-
tion is increasing, and the adoption of more rigorous methods, including
formal verification, is unavoidable because for achieving the quality de-
manded by the marketplace.

Intel is one of the strongest promoters of the use of formal methods
across all phases of the design development. Intel’s design teams use high-
level modeling of protocols and algorithms, formal verification of floating-
point libraries, design exploration systems based on formal methods, full
proofs and property verification of RTL specifications, and equivalence
checking to verify that transistor-level schematics correspond to their
RTL specifications. Even with the best effort to adopt the progress in
formal methods quickly, there is a large gap between an idea published at
a conference and a development of a tool that can be used on industrial-
sized designs. These tools and methods need to scale well, be stable
during a multi-year design effort, and be able to support efficient de-
bugging. The use of formal methods on a live design must allow for
ongoing changes in the specification and the design. The methodology
must be flexible enough to permit new design features, such as scan and
power-down logic, soft error detection, etc. In this paper, I will share my
experience with the formal verification of the floating-point unit on an
Itanium(R) microprocessor design and point out how it may influence
future microprocessor-design projects.

1 Introduction

Floating-point (FP) arithmetic is, with respect to functional validation, one of
the critical parts of modern microprocessor designs. Even though the algorithms
for FP arithmetic are well known, optimization for high performance, reliability,
testability and low power, may introduce bugs into a design. The huge input data
space that needs to be explored to ensure correctness of floating-point designs is
beyond the limits of traditional simulation techniques (hereafter referred to as
simulation). Fortunately, formal methods are well suited for this area and they
can enhance a verification effort substantially. Formal semantics of floating-point

L. Brim et al. (Eds.): FMICS and PDMC 2006, LNCS 4346, pp. 1–22, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

2 A. Slobodová

operations can be expressed in a succinct way and the IEEE Floating-Point
standard [IEEE] serves as a guide for many instruction-set architectures. In this
paper, floating-point algorithms are not our concern. Instead, I focus on the
correctness of their register-transfer level (RTL) implementations.

For almost a decade, papers reporting compliance proofs for circuit models
with respect to the IEEE standard and particular instruction set architecture
have been published. While the early research was focused on answering a prin-
cipal question of the feasibility of formal proofs for computer arithmetic (e.g.,
[AS95, CB98, OZ+99]), recent work emanates from commercial industry. Formal
tools and methods have reached the maturity necessary for their deployment in
real design projects.

There are substantial differences between the methodologies used at different
companies, depending on their target and available tools and resources. Intel
and AMD were among first companies that applied formal methods, at first to
verification of floating-point algorithms and then to RTL design. Methods re-
ported from AMD design team in [Rus98, RF00, FK+02] are solely based on
theorem proving using ACL2 system 1. Although lot of automation has been
added to building ACL2 models from RTL descriptions, and an ACL2 library
of Floating-Point Arithmetic has been created to avoid repetition of implemen-
tation independent proofs, the methodology still requires high-level expertise in
theorem proving and a perfect understanding of the design.

A recent paper from IBM by Jacobi et al. [JW+05] presents a verification
method based on symbolic simulation of a RTL model and its comparison to a
high-level model written in VHDL. Although highly automated, the approach
is not as rigorous as the one described by AMD, and lacks the scope of the
methodology developed at Intel [AJ+00][AJ+00, KA00, KN02, KK03, Sch03].
It skips the verification of the more difficult part of the design - multiplier,
by removing it from the cone of influence, hence proving merely correctness of
the adder and rounder. In contrast, in our approach, no abstraction or design
modification took place. We return to the comparison of their work to our results
in Section 7.

At Intel, an important work in the area of the verification of floating-point
algorithms, and in particular, floating-point libraries for Itanium(R) has been
done by John Harrison (see [Har05] for an overview, and [Har00a, Har00b, Har03]
for details). However, in hardware verification, while many papers have been
published on verification of Pentium(R) design, the first report on the formal
verification of floating-point arithmetic for the Itanium(R) microprocessor family
was reported on Designing Correct Circuits (DCC) Workshop 2, in March, 2004,
in Barcelona [SN04]. The main result was the first successful formal verification
of floating-point fused multiply-add instruction which is in repertoire of the IA-
64 Instruction Set Architecture (ISA). Proofs have been constructed for a live
project aimed at a next generation of Itanium(R) microprocessor. We continued
our work presented at DCC by extending the scope and verifying correctness

1 http://www.cs.utexas.edu/moore/acl2/
2 http://www.math.chalmers.se/˜ms/DCC04/

Challenges for Formal Verification in Industrial Setting 3

of the rest of floating-point instructions (about 40) issued to execution pipe
All instructions have been verified with respect to eight precisions and four
IEEE rounding modes, including dynamic rounding specified in floating-point
status register. The verification was based on symbolic trajectory evaluation
and arithmetic libraries previously proven within the same system [KN02]. The
proof includes correctness of the result, update of floating-point status register,
and correctness of more than a dozen interrupt signals. Behavior of the floating-
point circuitry for invalid instructions and/or instructions with false qualifying
predicates have been considered as well. All proofs have been regularly rerun as
a regression suite to ensure the consistency of any changes in the design. Formal
sequential equivalence checking was used to finish the validation of low-level
design proving its correctness with respect to the RTL. However this last phase
of verification is out of scope of this paper.

In the process of constructing our proofs we found many bugs and issues
that required RTL changes. Our work also helped to clarify incomplete and
ambiguous parts of our micro-architectural specification, and it contributed to
some hardware optimizations. The proofs are automated and portable to other
Itanium(R) micro-processor designs.

The goal of this paper is to describe the scope and results of our work, and to
provide some insight into challenges of using formal verification in an industrial
environment, where a fine balance between rigorous verification methods and
traditional simulation-based methods is crucial for success of the validation.
Although the approach we choose is a combination of known techniques already
documented in context of the verification of floating-point adders and multipliers,
we believe that it has many aspects that might be interesting to researchers in
academia as well as validation engineers.

The paper is organized in following way: Next section describes tools and
methodology developed for formal verification of floating-point arithmetic at
Intel Corporation and specifics of our approach. The core of our work is described
in Section 3, where we dive into details of the verification of the most interesting
operation - fused multiply-add, and report what has been covered by our proofs.
Since debugging of failing proofs is one of the concerns in the use of formal
methods, we touch this question in Section 4. Section 5 focuses on benefits of our
effort for the design project. We describe our experience with proof management
in Section 6. Concluding section contains summary of our work and detailed
comparison to related published work.

2 Our Approach to Formal Verification of FP Arithmetic

Intel’s approach to the validation of floating-point arithmetic includes a huge
database of corner test-cases and pseudo-random generators for simulation, as
well as Intel’s FORTE formal verification tool that combines theorem-proving
with model-checking capabilities 3. The methodology described below does not
3 A publicly available version of the tool that can be used for non-commercial purposes

can be downloaded from http://www.intel.com/software/products/opensource/

4 A. Slobodová

rely on FORTE specifics and can be reproduced using any tool with capability
of symbolic trajectory evaluation (STE) and some means of composing results
obtained by STE. We believe that formal proofs coupled with traditional pseudo-
random and focused simulation is a good way to achieve thorough functional
validation. In our project, the formal and simulation based validation teams
mutually benefited from their collaboration. However, this is out of the scope of
this paper and we will focus on formal verification only.

2.1 FORTE System and STE

The history of formal verification of floating-point arithmetic at Intel has been
motivated by two controversial trends: promising results in academia that were
followed by proof of concept at Intel Research Lab [OZ+99]; and bugs that
escaped to the micro-processor products [Coe96, Fis97]. Today, formal proofs
developed for Pentium(R) designs [AJ+00, KA00, KN02, KK03, Sch03] are re-
used and even put into hands of validation engineers that are not experts on
formal methods. These proofs have been done using FORTE – a system built on
top of VOSS. In this section, we give a rather informal description of the tech-
nology inside the FORTE system, just enough to understand the paper; details
can be found in the referred publications. FORTE includes a light-weight theo-
rem prover and a symbolic trajectory evaluation (STE) engine [STE]. The theo-
rem prover is based on a higher-order logic. The interface language for FORTE
is FL - a strongly-typed functional language in the ML family [Pau96]. One
good property of FL as a specification language is its executability. While cre-
ating specifications, we often ran sanity checks. For instance, the translation
from the memory format to register-file format was written as specified by the
Software Developers Manual [ISA], and then checked whether consequent in-
verse translations yield consistent values. FL includes Binary Decision Diagrams
(BDDs)[Bry86] as first-class objects and STE as a built-in function. For more
information we refer the interested reader to the online documentation for the
FORTE system and [KA00]. Here we describe the basic mechanisms of STE and
the framework in which we work.

STE is a weak form of model-checking where a formal (gate-level) model is
subjected to a symbolic simulation. The idea of a symbolic simulator is similar to
that of standard simulator but it differs in that symbolic values (besides explicit
binary values) are assigned to each signal and these values propagated through
the design model. Results of such simulations are formulas for specified signals
at specified times.

STE is an enhancement of symbolic simulation where Boolean logic has been
extended to a lattice [STE] with X as a bottom (no information) and T as a
top element (overconstrained). X is automatically assigned (by the STE simula-
tor) to signals to which no value has been specified. X can be thought of as an
unknown value. Its semantics and use are discussed later. Symbolic values are
bound to signals at specified times to form signal trajectories. Trajectories that
prune possible computations by restricting the values of some signals at specific

Challenges for Formal Verification in Industrial Setting 5

times are called antecedents; they can be interpreted as assumptions. Trajec-
tories that specify expected responses of the circuit are called consequents. A
specification is written in a form of Boolean expressions that constrain sym-
bolic values in antecedents and consequents. Trajectory evaluation correctness
statement |=ckt [ant ==� cons] means: all circuit computations that satisfy
antecedent ant also satisfy consequent cons. If any of consequent is violated, a
STE run (proof) fails and a counterexample can be extracted from this failure.
In fact, the failed proof provides all possible counterexamples and the user may
select one for debugging purposes. If all consequents hold at every point of the
simulation, success is reported by the tool.

2.2 Pre- and Post-condition Framework

Because of capacity limitations inherit in the STE engine, we may be forced
to break our model into smaller pieces. In this case, we make sure that those
pieces perfectly fit together. Informally, this means that the border signals of
the decomposition match exactly and that nothing is left out of the design. Also
the times at which we extract the values of the signals must be consistent. In
terms of STE, consequents that include border signals serve as antecedents in
the following step of the proof. In this way, we can use facts proved in one part
as assumptions for later proofs.

The idea of proof (de)composition described above comes from the pre-and-
post-condition theory used for verification of sequential programs. It was first
applied to STE by Kaivola and Aagaard [KA00]. It allows one to prove the
statements of the form {P}S{Q}, where P and Q are logical properties and
S is a program. In our case, the program is replaced by a circuit and tra-
jectories that bind values inputs and outputs of the circuit at specific times.
{P (x)}(pretrx, ckt, posttry){Q(x, y)} represents the statement: if pretrx binds
the Boolean vector x to signals (usually inputs) of the circuit ckt and posttry

binds the Boolean vector y to signals of the circuit (usually outputs), then the
property P (x) guarantees property Q(x, y).

{P (x)}(pretrx, ckt, posttry){Q(x, y)} is a shorthand for the following formula:

∀x(P (x) ⇒ (∃y(|=ckt [pretrx ==� posttry])) ∧
(∀y((|=ckt [pretrx ==� posttry]) ⇒ Q(x, y)))) (1)

In our methodology, P is a conjunction of an initial condition that describes
the restriction of inputs to the circuit, and an auxiliary pre-condition that is
used to further restrict the simulation. For consistency, we use the same initial
conditions throughout all proofs for every instruction analyzed, except when we
weaken an initial condition to true. An example of an initial input condition
is a statement that the specified input signals have value of a specific opcode.
Auxiliary pre-conditions are usually used to simplify a particular STE run by
restricting symbolic values (meaning that the inputs or internal nodes are re-
stricted). An example of an auxiliary pre-condition is a restriction specifying

6 A. Slobodová

a case in a case split. Another example of an auxiliary pre-condition is a side-
condition (that we prove separately) used by architects to simplify the design. We
refer to Q as the post-condition. Further, pretr is a union of the initial trajectory
that binds symbolic values to the input signals, and the pre-trajectory that binds
symbolic values to internal signals. posttr is referred to as a post-trajectory; it
binds symbolic values to signals that we consider as outputs for the purpose of
a specific proof.

Intel’s proof libraries contain reasoning rules that apply to STE runs [KA00].
Here we mention those rules that were relevant to our proofs:

– Pre-condition strengthening

{P ′(x)}(pretrx, ckt, posttry){Q(x, y)}, ∀x(P (x) ⇒ P ′(x))
{P (x)}(pretrx, ckt, posttry){Q(x, y)}

– Post-condition weakening

{P (x)}(pretrx, ckt, posttry){Q′(x, y)},∀x∀y(Q′(x, y) ⇒ Q(x, y))
{P (x)}(pretrx, ckt, posttry){Q(x, y)}

– Post-condition conjunction

{P (x)}(pretrx, ckt, posttry){Q1(x, y)}, {P (x)}(pretrx, ckt, posttry){Q2(x, y)}
{P (x)}(pretrx, ckt, posttry){Q1(x, y) ∧ Q2(x, y)}

– Sequential composition

{P (x)}(pretrx, ckt, midtrz){λx.λz.R(x)}, {R(x)}(midtrz, ckt, posttry){Q(x, y)}
{P (x)}(pretrx, ckt, posttry){Q(x, y)}

2.3 Managing the Size of BDDs

It is important to note that STE uses Binary Decision Diagrams (BDDs) [Bry86]
to represent formulas produced in the symbolic simulation of a design. BDDs
provide a unique representation of Boolean functions, but the space required to
represent a Boolean function can critically depend on the order selected for the
(decision) variables. Therefore, we need to carefully order the BDD variables. It
is well-known that an inappropriate (or random) variable ordering may result
in exponential growth of a BDD with respect to the number of input variables.
To determine a good variable ordering, we need to know the functionality of
particular part of the design. An automatic ordering mechanism called dynamic
re-ordering is available but it takes additional time and is more suitable for
reachability analysis which is not our case. Our rule of thumb in establishing the
variable ordering was to put control variables close to the top; and interleave
operands’ variables.

It can be tricky to find a variable ordering that is suitable for representing the
specification and the design model simultaneously as the former is written inde-
pendently from the latter. This can be solved by writing a provably equivalent
specification that does not have this problem.

Challenges for Formal Verification in Industrial Setting 7

In the process of symbolic simulation we try to avoid building formulas/BDDs
that do not contribute to the result – the formulas of the signals in the post-
trajectory. This can be done by node weakening – assigning X (don’t care values)
to some signals. Propagation of X ’s through the circuit often reduce the com-
plexity of intermediate formulas. Weakening is a safe and conservative way to
reduce the complexity of STE simulations. If a node is weakened by mistake,
a X will appear as the value for signals in post-trajectory results which causes
a proof failure; thus, this is a sound method. Besides user-guided weakening,
FORTE has an automatic weakening mechanism that is triggered by the size of
the BDD for some nodes.

2.4 Verification Methodology

Our methodology was driven by several factors:
– An unusually early start of the formal verification process: our work started

at the same time as our traditional simulation effort, i.e., when first lines of
RTL code were written.

– Continuous validation effort: proofs has been kept synchronous with changes
in the design;

– Limited resources: engineers with experience in formal verification are scarce
in the project development.

We looked for the most effective way to achieve high confidence in the design,
balancing between investment (learning new tools, writing new specifications,
proof maintenance, etc.) and return (covering functionality that cannot be cov-
ered by traditional simulation methods with comparable person/time resources).
We wished to make a maximal re-use of the formal proofs, and we wanted mod-
ularity for an easy maintainability. Our methodology builds on the experience
from other Intel groups [KA00, KN02, KK03]. Arithmetic, floating-point, bi-
nary and STE proof libraries created for other Intel projects was an important
contributer to our success.

Each proof started with a top-down decomposition of the high-level prob-
lem into sub-problems, where sub-problems were mapped to bit-level properties
checked by FORTE. Decomposition, if needed, was justified by STE pre-post con-
dition inference rules [KA00]. However, some simpler instructions did not require
decomposition. The gap between the high-level and bit-level specifications was
bridged by proof libraries that include IEEE rounding modes [IEEE] and basic
floating-point operations like addition and multiplication [KA00, KN02]. These
libraries have a clean separation between floating-point values and their encod-
ings that allows customization to particular architectures and micro-architectures.
The use of libraries allowed to redirect our focus on writing bit-level specifica-
tion, describing a mapping from RTL signals and time to mathematical entities,
creating environment for debugging and counter-example generation, and overall
proof maintenance.

8 A. Slobodová

3 Verification of Fused Multiply-Add

3.1 Floating-Point Multiply-Add

The Itanium(R) ISA defines a floating-point architecture that is fully IEEE com-
pliant for the single, double and double-extended data types, with exponent
width 8,11,15 or 17 bits (see [ISA] for details).

Floating-Point Registers (FR) in IA-64 architecture are 82 bits long: The sig-
nificand field (mantissa) is composed of an explicit integer part (significand{63})
and 63 bits of fraction (significand{62:0}). A 17-bit exponent field defines the
magnitude of the number. The exponent is biased. The extreme values of the
exponent (all ones and all zeros) are used to encode special values (IEEE Signed
Infinity, NaNs, IEEE Signed Zeros [IEEE], the double-extended Real Denor-
mals and double-extended Real Pseudo-Denormals [ISA]). The sign bit indicates
whether the number is negative (sign=1) or positive (sign=0).

The value of a finite FP number encoded with non-zero exponent can be
calculated from the expression

(−1)sign ∗ 2(exponent−bias) ∗ significand{63}.significand{62 : 0}2)

where significand{62 : 0}2 denote values represented by a significand{62 : 0}
with respect to unsigned binary encodings.

In this paper, we focus on operations applied to normalized operands. Nor-
malized FP numbers have exponents in the range from 1 to 0x1FFFE, and their
integer bit is 1. Operations on special values have been covered in our proofs,
too. Operations on denormals in considered implementation are deferred to soft-
ware assist handlers, and our proof obligations consist of raising software assist
faults if there is no higher fault.

The floating-point status register (FPSR) is an important element of the ar-
chitectural state. It contains dynamic control (disabled traps, rounding mode,
precision mode, wide-range exponent mode, flush-to-zero mode) and status in-
formation indicating traps and faults caused by the the execution of the floating-
point operations.

The Floating-Point Multiply-Add (FMA) instruction is one of the most com-
plex IA-64 FP instructions implemented in hardware. One of its important appli-
cations is the computation of sums of real and complex matrix products [Nie03].
It is also a basic instruction used for the implementation of division and square
root in Intel libraries. The format of fma instruction is:

(qp) fma.pc.sff1 = f3, f4, f2

The specification dictates that the product of floating-point register (FR) f3
and FR f4 is computed to infinite precision and then FR f2 is added to this
product, again in infinite precision. The resulting value is then rounded to the
precision indicated by pc (and possibly FPSR controls) using the rounding mode
specified by FPSR. The rounded and normalized result is placed in FR f1. qp

Challenges for Formal Verification in Industrial Setting 9

Schifter
Alignment

Normalize and Round

Booth Encoder

result exceptions

A B C

CSA

M
U

LT
IP

LI
ER

ADDER

max(Exp(A)+Exp(B)−Bias),Exp(C))

Leading Zero
Anticipator

Fig. 1. Floating-Point Fused Multiply-Add Unit

is instruction qualifying predicate. If qp is false, the instruction has no effect on
architectural state.

Considering the range of input values for fma instruction (three times 82 bits
for operands, 8 precisions, and 4 rounding modes), its validation using exhaus-
tive simulation would require 2251 test patterns to, even disregarding additional
control flags, e.g., flush-to-zero.

Hardware implementation of the fused-multiply instruction requires a combi-
nation of 64-bit multiplier, an alignment shifter, a 128-bit adder, and rounding
logic that includes a leading-zero anticipator and a normalization shifter (see
Fig. 1). Implementation details are irrelevant for the purpose of the paper and
are left out for confidentiality of the design.

After careful proof planning and manual decomposition of the proof goal
to low level properties, our main focus became symbolic trajectory evaluation
(STE) of those properties and propositional reasoning. All specifications are
written in functional language FL.

We will describe the methodology and how we used it to find bugs in the design
of an Itanium(R) microprocessor. We will mention the problems associated with
using formal verification to verify complex data-intensive instructions.

10 A. Slobodová

Several practical issues occur when verifying designs in industrial environ-
ment:

– Limited time and human resources;
– Incompleteness of the register-transfer level design;
– Incompleteness of the micro-architectural specification;
– Maintenance of the formal specifications and proofs through the life of the

project;
– Need for an efficient regression suite; and
– Complexity of the modern design, which includes features like power man-

agement, hardware sharing, scan logic, reset logic, and various levels of ab-
straction.

In addition to FP exceptions described in IEEE Standard [IEEE], Itanium(R)

has a number of faults and traps described in Software Developers Manual [ISA],
and many microarchitecture specific interrupts that are described in an Intel
internal micro-architectural-level project specification. Besides that, we have to
deal with additional complexity due to power management logic, scan logic and
reset logic.

Using formal verification in the early phase of the design process means also
dealing with the problems related to instability of the model. At the same time,
the sooner gets FV involved in the verification process, the more substantial
is its impact on finding and fixing bugs right at the beginning. Most problems
encountered were found in rounding and the sticky bit computations, and some
were a result of incorrect control logic.

Symbolic simulation of all of these constructs in one run is clearly beyond the
capacity of todays BDD-based or SAT-based tools. We split the verification task
into two subtasks: the correctness of the multiplier and the correctness of adder,
rounder and normalizer. Although both tasks have been previously studied, each
new design variation provides new verification challenges. In particular, complex
power management, scan-out tests, and protection from soft-errors are so much
interwind with the main functionality, that the mapping of the mathematical
entities to concrete signals at concrete times can be nontrivial. Furthermore,
designers use all their experience accumulated during the long years of designing
high-performance arithmetic units, e.g. pre-computation of some values, redun-
dancy, taking guess on values and make adjustments later, etc. All these tricks
might cause unwelcome surprises to a verification engineer, especially when de-
signer does not provide any mathematical argument for their validity.

Both tasks had to be further decomposed to fit into limitations of the STE
engine. Verification of the Multiplier was the harder of the two sub-tasks. The
reason for it is that although the algorithm specification gives some indication
of further decomposition, it had required a lot of experimentation with symbolic
simulation of the model until we found a well-balanced decomposition – a de-
composition that was robust to tolerate frequent design changes and fine enough
to keep the size of BDDs manageable.

Challenges for Formal Verification in Industrial Setting 11

3.2 Verification of Multiplier

We generalize the interpretation of the FP encodings described above. A floating-
point number is represented as a 5-tuple (s, e, m, bias,mfl), where s is the sign, e
is the exponent bit vector, and m is the significand. mfl stands for mantissa frac-
tion length, and it represents the number of bits after fraction point. Let A, B,
and C be FP values of our operands stored in FR f3, FR f4, and FR f2, respec-
tively; we represent them as tuples (sa, ea, ma, bias,mfl), (sb, eb, mb, bias,mfl),
and (sc, ec, mc, bias,mfl), respectively, where mfl = 63, and bias=65535, consis-
tently with the IA-64 floating-point register format.

A = (−1)�sa ∗ 2�ea−bias ∗ m̂a ∗ 2−mfl (2)
B = (−1) �sb ∗ 2 �eb−bias ∗ m̂b ∗ 2−mfl (3)
C = (−1) �sc ∗ 2 �ec−bias ∗ m̂c ∗ 2−mfl (4)

where x̂ is the integer encoded by the bit-vector x. Consequently,

A ∗ B + C = [(−1)�sa ∗ (−1) �sb ∗ (2�ea+ �eb−2∗bias ∗ m̂a ∗ m̂b ∗ 2−2∗mfl] +
[(−1) �sc ∗ 2 �ec−bias ∗ m̂c ∗ 2−mfl] (5)

The product A∗B can be represented as P = (sp, mp, ep, bias, pmfl), where sp =
sa ⊕sb (⊕ is addition mod 2), m̂p = m̂a ∗m̂b and |mp| = 128, êp = êa + êb −bias,
and the mantissa fraction length is pmfl = 126.

In the first phase, we prove that the Multiplier correctly computes multipli-
cation of significands.

m̂p = m̂a ∗ m̂b (6)

Correctness of the exponent logic and sign datapath are proved separately.
Our implementation uses modified Radix-4 Booth encoder (which interprets sig-
nificands as unsigned numbers) and a CSA tree [Kor02] that consists of 129-bit
(3, 2)-counters. Results are provided in redundant form as sum and carry vectors.

The proof follows the idea described by Kaivola and Narasimhan [KN02].
Generic proofs of the high-level multiplication algorithms and their mappings
to bit-level specifications are included in their libraries. All we needed to do
was to customize the specification of the Booth algorithm for the particular
format of our design. However, the verification of bit-level properties involves
implementation-specific details. The structure of RTL code is never as regular as
the mathematical bit-level specification. Different tricks are used to pre-compute
or estimate values and later adjust them to correct values. Since our symbolic
simulation engine is based on BDDs, and multiplication is known to be a hard
function for BDDs, the proof needed to be further decomposed into subtasks
that could pass through the simulator. We split the proof into three steps:

12 A. Slobodová

1. Correctness of the Booth encoder (computation of partial products).
2. Correctness of the CSA tree at an intermediate level.
3. Correctness of the result in the redundant form.

It was up to us how we “cut” the tree. We were guided by the capacity of
the STE tool and sense of readability and maintainability. Informally, a level is
a horizontal (edge) cut through the CSA tree that is defined by a selection of
exactly one edge (signal) on each input-to-output path. At first, we symbolically
simulated design and observed the growth of BDDs at some sampled levels. The
levels were chosen in such a way that they preserved consistency with respect to
timing and logical structure. Then we choose a level for which the sum of BDDs
had reasonable size.

Step 1: Assuming an initial condition (a valid fma instruction with normal
operands has been issued to the unit), we proved that the product was correctly
encoded into 32 partial products that were multiples of m̂a:

∀i, 0 ≤ i ≤ 32 : ppi = booth(m̂b, i) ∗ m̂a (7)

where

booth(s, i) = (−2) ∗ s2∗i+1 + s2∗i + s2∗i−1

where [s63, s62, s61, ..., s1, s0] is the binary representation of s and s−1 = 0, and
s65 = s64 = 0 is a two-bit zero-extension of s. It is well-known [Kor02] that

m̂a ∗ m̂b =
i=32∑
i=0

ppi ∗ 2i (8)

In fact, the proof of this equation was carried out by FORTE in a previous
project and this fact is a part of the libraries we used.

The correctness of each product has been proved separately because each run
required a different BDD variable ordering. Each partial product was expressed
using a disjunctive set of variables for consistency reasons. Although it was easy
to find a representation of partial products, the first representation we found led
to difficulties in consequent proof steps. This was one of several examples where
the choice of implementation made a straightforward verification impossible. The
cause of the problem was the implementation of partial products as a sum of
temporary partial products and a corresponding negate bit:

ppi := tmp ppi + negi (9)

where the most significant bit of tmp ppi and negi were inversions of each other.
The variable used for the negate bit occurs twice in such a representation. While
its first occurrence as the sign of the product suggests that is should be put close
to the “top” of the variable order, its second occurrence as a a bit that needs to
be added to the least significant bit indicates that its best position should be at
the tail of the order. The contradictory information content of these variables
makes it impossible to find a good BDD variable ordering. Although it wasn’t

Challenges for Formal Verification in Industrial Setting 13

an issue in the proof of the first step, it caused BDDs to grow too large in the
subsequent steps. In fact, it was impossible even to build the specification: a sum
of partial products.

Our solution to this problem was to use different variables for sign and its
inverted representation. Although it was a trivial exercise to prove that the sign
and negate bits were complements of each other, it showed to be unnecessary for
the proof of our second step; therefore, we left it out of our final proofs. We used
a variable ordering, with sign and the encoded bits of m̂b at the top, followed by
particular partial product interleaved with m̂a, and the negate bit on the tail.

Step 2: In our second step, we proved that the sum of sum- and carry-vectors
at an intermediate level of the CSA tree was equal to the sum of all partial
products multiplied by appropriate powers of 2.

sumint =
i=32∑
i=0

ppi ∗ 2i (10)

This equality was proved under the condition

0 ≤
i=32∑
i=0

ppi ∗ 2i ≤ 2128 (11)

which is weaker than a trivial consequent 15 of the equation 8 and the normality
of operands A and B:

263 ≤ m̂a ≤ 264 (12)
263 ≤ m̂b ≤ 264 (13)

which implies that the product is normal or “slightly above normal”, i.e., has
two integer bits from which at least one is 1:

2126 ≤ m̂a ∗ m̂b ≤ 2128 (14)

2126 ≤
i=32∑
i=0

ppi ∗ 2i ≤ 2128 (15)

Step 3: The last level (output) of the CSA tree consists of just two vectors, sum
and carry that represent the product:

m̂p = ŝum + 2 ∗ ̂carry (16)

This redundant form is used as one of the inputs to the Adder. Correctness
at this level means that the sum of sum-vectors and carry-vectors is equal to the
sum of sum- and carry-vectors at the intermediate level (as specified in step 2).

ŝum + 2 ∗ ̂carry = sumint (17)

14 A. Slobodová

Similarly to the previous step, this equality was proven under condition that the
specified value is in bounds

0 ≤ sumint ≤ 2128 (18)

which follows from the equality proven in Step 2 and the condition 11.
Putting all steps together and fact 8 we get our target equation 6.

3.3 Verification of Adder and Rounder

Algorithms for floating-point addition can be found in many computer architec-
ture text books (e.g., [Kor02]). In the context of fma operations, the addition of
the product P and the operand C, the main steps are:

1. Compare exponents of addends (ediff := êp−êc), to determine left/right shift
of mc, necessary for alignment. Determine exponent of intermediate result
as max(êp, êc).

2. If ediff > 0, shift mc right; if ediff < 0, shift mc left.
3. Add/subtract m̂p and m̂c, depending on sp and sc.
4. Normalize result by shifting it left by number of leading zeros, or right if

first non-zero integer bit is more than one place left from the digital point,
and adjust exponent.

5. Round to the specified precision using specified rounding mode. Note that
post-normalization might be required after rounding-up.

All cases form two groups: true addition and true subtraction. True addi-
tion can increase number of integer bits, while true subtraction can lead to a
sequence of leading zeros. Considering that our product is normal or slightly
above (Equation 15), the latter can happen only if ediff ∈ {−2, −1, 0, 1}. All the
cases when mc is shifted too far left (no overlapping occurs) can be reduced to
one case where mp is replaced by the sticky bit implemented as an OR of the
bits in mc. Similarly, all cases where mc is shifted too far right can be reduced
to the case where mc can be replaced by the sticky bit. The notions of sticky
bit, guard and round bit are essential for the computation of a rounded float-
ing point result without computing the precise result first. Further information
about these computations can be found in floating-point arithmetic textbooks
(e.g. [Kor02]).

Implementation of the rounding can be tricky and it is the most frequent
source of bugs. Because rounding is specified independently of the notion of
sticky bit, we did not need to know any details of its actual implementation.

Several formalizations of addition and rounding based on IEEE document
[IEEE] have been published (see, e.g., [Rus00]). Intel’s proof libraries contain all
necessary building blocks for the specification.

The problems with verifying floating-point addition were recognized in sev-
eral works each of which sketched its own solution [CB98, OZ+99, Rus00]. The
challenge of the symbolic simulation of the floating-point addition lies in two big
shifters – the alignment shifter that in our case aligns the significand of the third
operand and the 128-bit significand of the product; and the normalization of the

Challenges for Formal Verification in Industrial Setting 15

129-bit significand of the sum. While an equation of a fixed-amount shifter is
easily representable using BDDs when an appropriate variable ordering is used,
variable-amount shifter causes BDDs to grow exponentially. This observation led
to the idea of conditional symbolic simulation: performing the simulation process
under restricted conditions expressed as a Boolean function over the input vari-
ables [CB98]. Conditional symbolic simulation is implemented in our tool using
parametric representations of Boolean constraints [AJ+99].

Parametric representation of a set is an alternative to the characteristic func-
tion. It consists of a list of expressions, one for each variable that is in the support
of characteristic function. These expressions are defined over a set of new vari-
ables. They can be viewed as a mapping of vectors of new variables to the vectors
of original variables. The mapping is a surjective mapping onto represented set.
In other words, for any assignment of new variables, the mapping provides an
assignment of original variables that is in the target set, and for any element in
the set, there is an assignment to new variables that is mapped to this element.
Therefore, any run of conditional symbolic simulation will exercise only the com-
putational flow defined by the set. At the same time, all inputs that satisfy the
conditions will be exercised. In particular, if we run symbolic simulation under
restriction that implies a fixed alignment, output of the alignment shifter will be
the input shifted by that constant and is easily representable by BDDs. A case
split that is appropriate for the verification of floating-point addition has been
previously described [AJ+99].

Our proofs for the Adder and Rounder are split into many conditional sym-
bolic simulation runs. Each run uses a variable ordering that is suitable. A good
order interleaves bits of the shifted addends and the normalized result. The case
split has an additional advantage of the possible parallelization of the task on
many computers. Case conditions are functions of the addends - the product and
the third operand. The case split follows the scheme below:

- true addition (sp = sc)
- extreme cases

- far-left case: ediff < EMIN
- far-right case: ediff > EMAX

- normal cases: EMIN ≤ ediff ≤ EMAX
- true subtraction (sp �= sc)

- extreme cases
- far-left case: ediff < EMIN
- far-right case: ediff > EMAX

- close exponent cases: ediff ∈ {−2, −1, 0, 1}
- cases by the number of leading zeros

- normal cases excluding close cases

The choice of EMIN and EMAX depends on the implementation and the way
the specification is written. There was some freedom in the choice up to the
point that all extreme cases defined by these values should be treated in the
same way. We choose EMIN=-130 and EMAX=130. The completeness of the

16 A. Slobodová

case split was proven by means of propositional reasoning. The claim has the
form: initial condition implies the existence of a case from the considered case
list. Cases might even overlap if it simplifies conditional symbolic simulation.

Correctness of a floating-point operation includes faults and flags raised after
its execution. There are IEEE mandated exceptions: overflow, underflow, invalid
and inexact. We verify these exceptions and the round-up flag that is a part of
our micro-architecture as well.

Exceptions cause the respective flag in FPSR to be set. Flags in FPSR are
“sticky” - once set, they remain set until the FPSR is reset or changed by in-
structions used for this purpose. If no traps or faults occurs, the FPSR remains
unchanged. In the case that an exception event occurred and that corresponding
traps are enabled as stated in FPSR, the appropriate flags are set in Interrupt
Status Register. Processing of the exceptions is verified in a separate proof.
Besides IEEE FP exceptions, our micro-architecture has additional interrupt
signals with a complex prioritization scheme that includes the parity-error fault,
reserved register field fault, illegal operation fault, software assist fault, specula-
tive operation fault, serialized re-steer fault, single-step trap, instruction break
debug fault, and others. The hardest part of the verification of these signals was
to figure out what their specification was as it was unstable during the project
and the documentation of the changes was always behind the RTL. Once the
specification was established, the STE completed without any intervention, and
it did not require any detailed knowledge about the implementation.

Note that the product of normal numbers, can even be a denormal number,
when its exponent gets too small. This case was covered by our proofs as well.

Hardware can also take advantage of certain properties of the product of
significands that originate from normal numbers. In other words, the Adder does
not need to work correctly for arbitrary addends, as long as it works correctly in
the context of fma instruction. In that case the property used by designers needs
to be proven and these facts can be used in the final proof. In particular, we
proved and then used in the Adder proofs the fact that there is no carry-out from
most significant bit of the sum of sum- and carry-vectors (in the representation
of the product) when at least one of the two most significant bits of the product
is one.

4 Debugging

The most rewarding part of our formal verification effort was the fact that we
were able to help architects find and debug errors in their evolving design. How-
ever, a proof failure does not always mean a problem in the design. It might be a
consequence of flaws in the specification, proof construction, or the verification
tool. In this section we touch on the question of the debugging of failing proofs.
We present a partial list of the most common sources of proof failures; hopefully,
this list will help future users of this technology to localize their problems.

Challenges for Formal Verification in Industrial Setting 17

– Xs, i.e., don’t care values, in post-trajectory.
This is the most frequent failure when first running STE. You can observe
Xs with the FORTE circuit viewer (cktviewer), or list them using some FL
functions defined for this purpose. Xs can signal a real bug in the design:

• Some signals that were not supposed to become a part of a data-flow
appear to have an impact on the result.

• Some signals remain uninitialized. This can happen for many reasons,
e.g. missing entry for a truth-table or presence of a multiplexor with
incomplete coverage for the combination of enabling signals.

Occurrence of Xs in post-trajectory can be also caused by a mistake of the
verification engineer:

• Incorrect binding in pre-trajectory: missing signals or incorrect timing.
• Weakening (dynamic or manual) was too aggressive replacing important

signal values with Xs.
• Some signals that do not contribute to consequents were accidentally

included in the post-trajectory.
– Specification is incorrect. In most cases this problem becomes clear when

you extract a counterexample and compare it with some reliable source (e.g.
we had a web-based FP calculator for different architectures). Executability
of a specification is crucial for its debugging. A different problem that can
occur with the specification is when the constraint under which STE ran
was unsatisfied. Our STE is equipped with a checker for such vacuous proof
attempts.

– Tool bug. Those tool bugs that expose themselves clearly, e.g., a segmenta-
tion fault, are not dangerous. We are more afraid of those that hide behind
successful proofs. One of the important categories of tool bugs are bugs in
RTL-to-STE-model translation tool. An important sanity check for us was
to watch for all bugs filed by simulation and analyze any case when formal
proofs could not reproduce them.

– You found a real design bug! Debugging can be difficult if your trans-
lation tool modified RTL. Fortunately, this was not our problem. For each
failed proof, STE returns failing condition. First, we extracted a scalar coun-
terexample and ran the STE simulation again to confirm its validity. After-
wards, we reproduced the same error in the traditional simulation environ-
ment which is preferable by architects, and finally, we reported the bug to
the architect responsible for that particular part of the RTL. When the
architect indicated a fix, we reran the proof. Sometimes, when the scalar
counter-example did not provide enough information to root the cause of
the problem, we helped architects to debug the problem using symbolic val-
ues and they found it very useful.

5 Our Impact on the Design Project

Our main goal was to contribute as much as possible to the validation of the
floating-point arithmetic in RTL design. While the main focus was on the

18 A. Slobodová

correctness of the computationally intensive instructions, much more was cov-
ered by the proofs, and the design project profited from our effort in variety of
ways.

Finding Bugs. Formal verification team found dozens of bugs, some of them
months after RTL was considered to be completed and clean. Most of them were
related to the rounding logic and to the recognition of floating-point exceptions
or their prioritization. Some of them were very hard or practically impossible to
find by means of tradition simulation because they occurred only under special
conditions.

Clarifying Design Interfaces. One of the contributions of our effort was in
helping to clarify interface among FP subunits. Subunits of the FP execution unit
were designed by different architects, and we found several mismatches between
their understanding of the interface specification. The Micro-Architectural Spec-
ification (MAS) was often incomplete regarding this, especially while architects
were busy coding RTL code.

Removing Redundant Signals. One of the strengths of STE is that it has the
ability to deal with X as a distinguished value (X) for don’t care. We used this
feature for proving redundancy of some signals in CSA tree. In our project, the
multiplier was supposed to handle both signed and unsigned numbers; therefore,
our architects were conservative in the choice of the width of the sum and carry
vectors in the CSA tree. They wanted to make sure that no information would
be lost. We re-ran our proofs with X ′s assigned to the most significant bits of
the vectors and proved that way that they are redundant for the computation
of the correct result. After that, the width of the vectors was reduced, and that
saved the valuable resources - area and power.

Benefit of the Fast Multiplier Proof. Exhaustive simulation of 64 × 64 bit
multiplier is practically impossible as it involves 2128 test cases. In addition, de-
pending on the opcode, multiplication can be performed on signed or unsigned
integers, or might be re-directed completely (e.g. in case of multiplication by
zero). Therefore, our simulation team was extremely pleased when we reported
completion of the formal proof for the multiplier. This gave architects freedom
to modify the RTL even in later phases of the project. Such late RTL modifica-
tions might have different reasons - timing and power optimization, or refinement
of the RTL required by equivalence checker that is used for the verification of
the transistor-level schematics against RTL. In order to simplify the verification
task for the equivalence checker, architects were modifying RTL to make it struc-
turally closer to the implementation. A quick re-run of formal proofs provided a
huge advantage over simulation.

Regressions. The main advantage of the formal proofs is that once created
they can be re-run without big manual effort. The continuously changing RTL
model was regularly checked by the proofs that we maintained synchronized
with RTL until the end of the project. Since many of the proofs could run

Challenges for Formal Verification in Industrial Setting 19

independently, we could distribute them to idle workstations. We also created a
small regression suite that was used on request of architects before they checked
their changes in repository. As long as the choice of algorithm implemented in
RTL does not change proof maintenance reduces to changes in mapping between
signals and time to mathematical entities and occasional node weakening. The
amount of work depends greatly on the proof management described in the next
section.

6 Proof Management

There are many aspects that need to be taken into account when you create
proofs. Some of them are conflicting and you need to find compromise. We had
advantage of not to be the first ones who used FORTE for floating-point verifi-
cation. Since it was expected that the proofs will live throughout the duration
of the project they needed to be designed with maintainability in mind. We
learned from the teams that worked on the formal verification of Pentium(R)

micro-processors [KK03] how to manage evolving proofs so their maintenance
would not become a burden. However, we were unable to avoid mistakes. It
helped us to understand how important it is to share code among the proofs,
and not to over-optimize them. We rearranged our proofs several times in order
to simplify the specification or improve readability, and we have never been sorry
for doing it. One difference between our project and previous projects was that
we started our verification in an earlier phase. As a consequence, we were always
facing continuous design changes: repartitioning, change of naming and timing,
and structural and interface changes. The other consequence of our early start
was incomplete functionality, unstable model, and incomplete specification. The
importance of well-structured proofs became clear from the fact that after the
fma instruction proof had been completed, it took us only about a month to
construct the proofs of all other arithmetic instructions.

7 Summary

We described our formal verification effort on next generation Itanium(R) mi-
croprocessor. It was the first successful formal verification effort on Itanium(R)

in general, and first formal verification of fused multiply-adder. The verifica-
tion started in an early stage of the project when design was unstable and the
specification incomplete. The reward for all difficulties caused by the instability
of the model and specification was early discovery of bugs, and, consequently,
an acceleration of the design process. Although there is no good way to mea-
sure the contribution of early bug detection to the savings of the architect’s
and the designer’s time, it was recognized by the floating-point team. They
also felt more comfortable when changing the design in the later stages of the
project. Especially appreciated was the proof of the multiplier that gave them
a lot of optimization freedom. All proofs were maintained throughout the life
of the project. Writing formal specifications also contributed to clarification of

20 A. Slobodová

the micro-architectural and architectural specification, and this effort inspired
several important entries into the Itanium(R) manuals. All of the specifications
are re-usable for future Itanium(R) design projects.

The hardest proof was the proof of fused multiply-add instruction. The in-
struction has been added to several instruction set architectures including
Itanium(R) . It is a core instruction for different computations including FP di-
vision and square-root. The main result reported in this paper was a first proof
of this instruction. It combines known techniques applied to the proofs of multi-
plier [AS95, Rus98, OZ+99, Jac02, KN02] and an adder [CB98, OZ+99, Jac02].
However, the scope of the proof (that included a lot of control) and complexity
of the design verified brought unexplored challenges.

The only work published on the formal verification of FMA that we are aware
of is [JW+05]. There are several important differences between their and our
work:

– In [JW+05], multiplier was excluded from the cone of influence by inserting
artificial variables. This way the correctness of multiplication is missing.
Roughly speaking the proof is the proof of addition with rounding. Our
approach did not change RTL and includes correctness of multiplier.

– The proof in [JW+05] is based on symbolic simulation of two gate-level mod-
els; the one derived from RTL and another derived from the reference model
that is written in VHDL. The two are compared for equivalence. Although
the reference model is quite simple, it has not been formally verified. Our
proofs compare formal IEEE models to RTL implementation. Consequently,
RTL to transistor-level implementation was compared as a part of our design
methodology.

– The scope of our proofs is wider: all arithmetic, logic and miscellaneous in-
structions, for any legal inputs, with respect to eight precisions (including 3
IEEE precisions), and four rounding modes. Besides the IEEE exceptions,
many additional exceptions are considered. At the same time, we must men-
tion that we did not need to deploy specification for denormal operands as
those cases are deferred to software assist in our micro-architecture. For our
design, the proof obligation was reduced to checking that Software Assist
Fault was raised and that the architectural state was preserved. The result
of a multiplication can be denormal even for normal input operands and this
case is handled in hardware and was covered by our proofs.

– In [JW+05] an assumption of empty pipe is made in order to simulate an
instruction in isolation. Our assumption is weaker – we allow other instruc-
tions in the pipe unless they cause a flush the pipe (e.g. if there is an older
instruction that is raising fault).

All proofs can be customized to another Itanium(R) micro-architecture. Once
the case splits and appropriate variable orderings are established and the map-
ping of the circuit signals and timing to mathematical entities is found, the
FORTE system is expected to run fairly automatically. Use of formal methods
in the validation of floating-point unit had a considerable impact on the project

Challenges for Formal Verification in Industrial Setting 21

in terms of acceleration of RTL coding, reduction in validation resources, and at
the same time, achievement of higher coverage.

Acknowledgement

I wish to thank Krishna Nagalla, who actively participated on the development
of some proofs, Roope Kaivola and Katherine Kohatsu who helped to ramp up
on tools and methodology developed for Pentium(R) 4 designs and provided all
floating-point proof libraries. Our work would be very hard without collabora-
tion with our architects, in particular Sridhar Samudrala, Kimberly Weier, and
Vinodh Gopal; and our validation team, in particular Nick Morgan who was
answering our questions on simulation environment in which we created scalar
counter-examples.

References

[AJ+99] M. Aagaard, R. Jones, K.-J. Seger: Formal Verification Using Parametric
Representations of Boolean Constraints. Proc. of the 36th ACM/IEEE con-
ference on Design Automation, 1999, p. 402-407.

[AJ+00] M. Aagaard, R. Jones, R. Kaivola: Formal Verification of Iterative Algo-
rithms in Microprocessors. ACM/IEEE Proc. of Design Automation Con-
ference, 2000, pp.201-206.

[AS95] M. Aagaard, K.-J. Seger: The Formal Verification of a Pipelined Double-
Precision IEEE Floating-Point Multiplier. ACM/IEEE Proc. of the Inter-
national Conference on Computer-Aided Design, 1995, pp.7-10.

[Bry86] Bryant, R.E.: Graph-based Algorithms for Boolean Function Manipulation.
IEEE Transactions on Computers, C-35, pp. 677-691, 1986.

[Coe96] T. Coe: Inside the Pentium FDIV bug. Dr. Dobbs Jornal. April 1996, pp.
129-135.

[CB98] Y.-A. Chen, R. Bryant: Verification of Floating-Point Adders. Proc. of con-
ference on Computer-Aided Verification (CAV), LNCS 1427 (Springer),
1998, pp. 488-499.

[Fis97] L.M.Fisher: Flaw reported in a new Intel chip. New York Times, May 6,
1997, D 4:3.

[FK+02] A. Flatau, M. Kaufmann, D. Russinoff, E. Smith, R. Sumners: Formal Ver-
ification of Microprocessors at AMD. Designing Correct Circuits 2002.

[Har00a] J. Harrison: Formal Verification of Floating-point Trigonometric Functions.
Proc. FMCAD, Springer-Verlag 2000, LNCS 1954, pp. 217-233.

[Har00b] J. Harrison: Formal Verification of IA-64 Division Algorithms. Proc.
TPHOL, Springer-Verlag 2000, LNCS 1869, pp. 234-251.

[Har03] J. Harrison: Formal Verification of Square Root Algorithms. Formal Methods
in System Design, Vol. 22, 2003, pp. 143-153

[Har05] J. Harrison: Floating-Point Verification. Proc. of FM 2005, LNCS 3582
(Springer), pp. 529-532, 2005.

[Jac02] Formal Verification of a Fully IEEE Compliant Floating Point Unit. Disser-
tation, University of Saarbruecken, April 2002.

22 A. Slobodová

[JW+05] Ch. Jacobi, K. Weber, V. Paruthi, J. Baumgartner: Automatic Formal Ver-
ification on Fused-Multiply-Add FPUs. Proc. of the conference on Design,
automation and test in Europe (DATE), 2005.

[Kor02] I. Koren: Computer Arithmetic Algorithms. 2nd edition, (A.K.Peters) 2002.
[KA00] R. Kaivola, M, Aagard: Divider Circuit Verification with Model Checking

and Theorem Proving. TPHOL 2000, (Springer) LNCS 1869, pp.338-355.
[KK03] R. Kaivola, K. Kohatsu: Proof Engineering in the Large: Formal Verifica-

tion of Pentium(R) 4 Floating-Point Divider. Software Tools for Technology
Transfer, (Springer 2003) Vol.4, Issue 3, pp 323-335.

[KN02] R. Kaivola, N. Narasimhan: Formal Verification of the Pentium(R) 4
Floating-Point Multiplier Proc. of the conference on Design, automation
and test in Europe (DATE), 2002.

[Nie03] Y. Nievergelt: Scalar Fused Multiply-Add Instructions Produce Floating-
Point Matrix Arithmetic Provably Accurate to the Penultimate Digit. ACM
Transactions on Mathematical Software (TOMS), VOl.29, Issue 1, ACM
Press, March 2003, pp. 27-48.

[OZ+99] J. O’Leary, X. Zhao, R. Gerth, C.-J. Seger: Formally Verifying IEEE Com-
pliance of Floating-point Hardware. Intel Technology Journal, Q1 1999.

[RF00] D. Russinoff, A. Flatau: Mechanical Verification of Register-Transfer Logic:
A Floating-Point Multiplier. In M. Kaufmann, P. Manolios, J. Moore, Edi-
tors, Computer-Aided Reasoning: ACL2 Case Studies, Kluwer Press 2000.

[Rus98] D. Russinoff: A Mechanically Checked Proof of IEEE Compliance of a
Register-Transfer-Level Specification of the AMD-K7 Floating-Point Multi-
plication, Division, and Square Root Instructions. LMS Journal of Compu-
tation and Mathematics 1: pp.148-200, 1998.

[Rus00] D. Russinoff: A Case Study in Formal Verification of Register-Transfer Logic
with ACL2: The Floating Point Adder of the AMD Athlon(TM) Processor.
FMCAD 2000, Springer, LNCS 1954, pp.3-36.

[Sch03] T. Schubert: High Level Formal Verification on Next-Generation Micro-
processors. ACM/IEEE Proc. of Design Automation Conference, 2003,
pp.1-6.

[STE] C.-J.H. Seger, R.E. Bryant: Formal Verification by Symbolic Evaluation of
Partially-Ordered Trajectories. Formal Methods in System Design, 6(2):147-
189,1995.

[SN04] A. Slobodová, K. Nagalla: Formal Verification of Floating-Point Multiply-
Add on Itanium(R) Processor. Designing Correct Circuits (Unpublished
Proc.), March 2004, Barcelona.

[Pau96] L. Paulson: ML for the Working Programmer. Cambridge University Press,
1996.

[IEEE] IEEE Standard for Binary Floating-Point Arithmetic. ANSI/IEEE Std 754-
1985.

[ISA] Intel(R) Itanium(R) Architecture Software Developer’s Manual. Revision 2.1,
Document numbers: (245317-245319)-004, Intel Corporation. 2002.

Distributed Verification:
Exploring the Power of Raw Computing Power�

Luboš Brim

Faculty of Informatics, Masaryk University, Brno, Czech Republic

1 Brute-Force in Distribute Verification

With the increase in complexity of computer systems, it becomes more important
to develop formal methods for ensuring their quality and reliability. Various tech-
niques for automated and semi-automated analysis and verification have been
successfully applied to real-life computer systems. However, these techniques
are computationally hard and memory intensive in general and their applica-
bility to extremely large systems is limited. The major hampering factor is the
state space explosion problem due to which large industrial models cannot be
efficiently handled by a single state-of-the-art computer.

Much attention has been focused on the development of approaches to battle
the state space explosion problem. Many techniques, such as abstraction, state
compression, state space reduction, symbolic state representation, etc., are used
to reduce the size of the problem to be handled allowing thus a single computer
to process larger systems. There are also techniques that purely focus on in-
creasing the amount of available computational power. These are, for example,
techniques to fight memory limits with efficient utilisation of an external I/O
device [2,19,24,28,32], or techniques that introduce cluster-based algorithms to
employ aggregate power of network-interconnected computers.

Cluster-based algorithms perform their computation simultaneously on a
number of workstations that are allowed to communicate and synchronise them-
selves by means of message passing. Cluster-based algorithms can thus be charac-
terised as parallel algorithms performing in a distributed memory environment.
The algorithms prove their usefulness in verification of large-scale systems. They
have been successfully applied to symbolic model checking [22,23], analysis of
stochastic [25] and timed [6] systems, equivalence checking [8] and other related
problems [7,9,21].

The idea of parallel verification appeared already in the very early years of
the formal verification era. However, inaccessibility of cheap parallel comput-
ers together with negative theoretical complexity results excluded this approach
from the main stream in formal verification. The situation changed dramatically
during the past several years. Computer progress over the past two decades has
measured several orders of magnitude with respect to various physical parame-
ters such as computing power, memory size at all hierarchy levels from caches
to disk, power consumption, physical size and cost. In particular, the focus of
� Supported by the Grant Agency of Czech Republic grant No. 201/06/1338.

L. Brim et al. (Eds.): FMICS and PDMC 2006, LNCS 4346, pp. 23–34, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

24 L. Brim

novel computer architectures in parallel and distributed computing has shifted
away from unique massively parallel systems competing for world records to-
wards smaller and more cost effective systems built from personal computer
parts. In addition, recent shift in the emphasis of research on parallel algorithms
to pragmatic issues provided practically efficient algorithms for solving compu-
tationally hard problems. As a matter of fact, interest in parallel verification has
been revived.

Asymptotic complexity analysis has turned out to be a surprisingly effective
technique to predict the performance of algorithms, to classify some of the prob-
lems as computationally hard. In complexity theory, the class NC (for ”Nick’s
Class”) is the set of problems decidable in polylogarithmic time on a parallel
computer with a polynomial number of processors. Just as the class P can be
thought of as the tractable problems, so NC can be thought of as the problems
that can be efficiently solved on a parallel computer. NC is a subset of P because
parallel computers can be simulated by sequential ones. It is unknown whether
NC = P, but most researchers suspect this to be false, meaning that there are
some tractable problems which are probably ”inherently sequential” and cannot
be sped up significantly by using parallelism. Just as the class NP-complete can
be thought of as ”probably intractable”, so the class P-complete can be thought
of as ”probably not amenable to efficient parallelisation”.

Many efficient parallel algorithm can be found for selected subclasses of P-
complete problems. Most problems of practical importance call for compute-
intensive methods. Accordingly, the attitude towards “inherently sequential”
began to change. Not all “inherently sequential” problems are equally difficult
to parallelise. There are many problems where the average, or typical, instance
is relatively easy to solve, and only the worst-case instances are computationally
very demanding. For example, several efficient and highly parallel algorithms
are known for solving the maximum flow problem, which is P-complete. The
standard complexity theory for P-complete problems asserts the non-existence
of algorithms that are efficiently parallelised across an entire problem class, but
ignores the possibility that many instances, perhaps including those of interest,
can be solved efficiently.

Efficient parallel solution of many problems often requires invention of original,
novel approaches radically different from those used to solve the same problems se-
quentially. Classical examples are list rankings, connected components, depth-first
search in planar graphs etc. The rules of algorithm design and analysis have to be
changed drastically: we still have to devise and implement clever algorithms, but
complexity is not measured asymptotically in terms of the size of the problem: it
is measured by actually counting operations, disk accesses, communications, and
seconds. In addition, development of methods, tools, and practises for assessing
and refining algorithms through experimentation is unavoidable, extensive use of
various techniques for efficient implementation as known from algorithm engineer-
ing for parallel computation (see e.g.[1]) underpins the new approach.

One of the simplest approach to parallel problem solving is brute-force par-
allel exploration of the state space. All possible states are generated in some

Distributed Verification 25

systematic way and checked for the desired property. If the state space is finite,
a success is guaranteed provided we can wait long enough. Although exhaustive
search is conceptually simple and often effective, such an approach to problem
solving is sometimes considered inelegant. The continuing increase in computing
power and memory sizes has revived interest in brute-force techniques. Many
“real” problems exhibit no regular structures to be exploited, and that leaves
exhaustive enumeration as the only approach in sight.

Model checking finite state systems in practise is bug hunting by exhaustively
searching a seemingly “chaotic” state space for failed assertions. Hence, brute-
force approach to verification is in some sense quite natural and, more impor-
tantly, in fighting the practical limitations caused by the state explosion problem
the exhaustive search appears to be the only viable approach. Reachability is a
simple verification problem that is tractable in parallel as the exhaustive enumer-
ation of the state space can be divided into independent subtasks. Reachability
is thus one of the basic techniques for the distributed verification.

As a demonstration of the effectiveness of parallel reachability for solving
theoretically intractable problems we consider parallel LTL model-checking. The
state space to be explored is a directed graph with an initial state and a set of
accepting states. In this state space we want to search for accepting cycles. The
simplest brute-force approach is first to search for accepting states reachable
from the initial one and then for each accepting vertex to test the reachability
of the vertex from itself. However, we can do significantly better by using extra
information.

The amount of additional information stored is a major issue for the space
complexity. We need to be careful in achieving a good balance between space and
speed, ideally we use storage space proportional to the logarithm of the number
of states.

We present several algorithms for parallel enumerative LTL model-checking
that are based on performing repeated reachability. The demonstration includes
algorithms presented in [5,10,11,14,3,4,12,13]. The state space is searched for
states carrying a particular information, states might be re-visited as the infor-
mation changes. To guide the search various data structures are used. Besides
the traditional stacks and queues, more complicated data structures might be
employed as well.

2 Algorithms for Accepting Cycle Detection

Although the algorithms are meant for cluster-based computing we describe the
main ideas primarily as sequential, leaving thus many technical details related
to distributed computation out.

The problem we consider comes out from the automata-based procedure to
decide LTL model checking problem as introduced in [34]. The approach ex-
ploits the fact that every set of executions expressible by an LTL formula is an
ω-regular set and can be described by a Büchi automaton. In particular, the ap-
proach suggests to express all system executions by a system automaton and all

26 L. Brim

executions not satisfying the formula by a property or negative claim automaton.
These automata are combined into their synchronous product in order to check
for the presence of system executions that violate the property expressed by the
formula. The language recognised by the product automaton is empty if and only
if no system execution is invalid.

The language emptiness problem for Büchi automata can be expressed as
an accepting cycle detection problem in a graph. Each Büchi automaton can
be naturally identified with an automaton graph which is a directed graph G =
(V, E, s, A) where V is the set of vertexes (n = |V |), E is a set of edges (m = |E|),
s is an initial vertex, and A ⊆ V is a set of accepting vertexes (a = |A|). We say
that a reachable cycle in G is accepting if it contains an accepting vertex. Let
A be a Büchi automaton and GA the corresponding automaton graph. Then A
recognises a nonempty language iff GA contains an accepting cycle. The LTL
model-checking problem is thus reduced to the accepting cycle detection problem
in automaton graphs.

The best known enumerative sequential algorithms for detection of accept-
ing cycles are the Nested DFS algorithm [17,27] (implemented, e.g., in the
model checker SPIN [26]) and SCC-based algorithms originating in Tarjan’s al-
gorithm for the decomposition of the graph into strongly connected components
(SCCs) [33]. While Nested DFS is more space efficient, SCC-based algorithms
produce shorter counterexamples in general. Here, for simplicity reasons, we will
not be dealing with the counterexample generation subtask.

It is a well known fact that computing depth-first search postorder is P-
complete [31], hence probably inherently sequential. This means that none of
the two algorithms can be easily adapted to work on a parallel machine. A few
fundamentally different cluster-based techniques for accepting cycle detection
appeared though. They typically perform repeated reachability over the graph.
Unlike the postorder problem, reachability is a graph problem which can be
well parallelised, hence the algorithms might be transformed to cluster-based
algorithm that work with reasonable increase in time and space.

2.1 Maximal Accepting Predecessor (MAP)

A vertex u is a predecessor of a vertex v if there is a non-trivial path from u to
v. The main idea behind the algorithm is based on the fact that each accepting
vertex lying on an accepting cycle is its own predecessor.

Instead of expensive computing and storing of all accepting predecessors for
each (accepting) vertex, the algorithm computes a single representative accept-
ing predecessor for each vertex. We presuppose a linear ordering ≺ of vertexes
(given e.g. by their memory representation) and choose the maximal accepting
predecessor. For a vertex u we denote its maximal accepting predecessor in the
graph G by mapG(u). Clearly, if an accepting vertex is its own maximal accepting
predecessor (mapG(u) = u), it is its own predecessor and it lies on an accepting
cycle. Unfortunately, the opposite does not hold in general. It can happen that
the maximal accepting predecessor for an accepting vertex on a cycle does not
lie on the cycle. Such vertexes can be safely deleted from the set of accepting

Distributed Verification 27

vertexes (by applying the deleting transformation) and the accepting cycle still
remains in the resulting graph. Whenever the deleting transformation is applied
to automaton graph G with mapG(v) �= v for all v ∈ V , it shrinks the set of
accepting vertexes by those vertexes that do not lie on any cycle.

As the set of accepting vertexes can change after the deleting transformation
has been applied, maximal accepting predecessors must be recomputed. It can
happen that even in the graph del (G) the maximal accepting predecessor func-
tion is still not sufficient for cycle detection. However, after a finite number of
applications of the deleting transformation an accepting cycle is certified. For
an automaton graph without accepting cycles the repetitive application of the
deleting transformation results in an automaton graph with an empty set of
accepting vertexes.

Time complexity of the algorithm is O(a2 · m), where a is the number of
accepting vertexes. Here the factor a ·m comes from the computation of the map
function and the factor a relates to the number of iterations.

One of the key aspects influencing the overall performance of the algorithm is
the underlying ordering of vertexes used by the algorithm. In order to optimise
the complexity one aims to decrease the number of iterations by choosing an
appropriate vertex ordering. Ordering ≺ is optimal if the presence of an accepting
cycle can be decided in one iteration. It can be easily shown that for every
automaton graph there is an optimal ordering. Moreover, an optimal ordering
can be computed in linear time.

An example of an optimal ordering is depth-first search postorder. Unfortu-
nately, the optimal ordering problem, which is to decide for a given automaton
graph and two accepting vertexes u, v whether u precedes v in every optimal
ordering of graph vertexes, is P-complete [12] hence unlikely to be computed
effectively in a distributed environment. Therefore, several heuristics for com-
puting a suitable vertex ordering are used. The trivial one orders vertexes lexico-
graphically according to their bit-vector representations. The more sophisticated
heuristics relate vertexes with respect to the order in which they were traversed.
However, experimental evaluation has shown that none of the heuristics signifi-
cantly outperforms the others. On average, the most reliable heuristic is the one
based on breadth-first search followed by the one based on (random) hashing.

2.2 Eliminating Bad States (OWCTY)

The accepting cycle detection problem can be directly reformulated as a question
whether the automaton graph contains a nontrivial accepting strongly connected
component.

A strongly connected component (SCC) of G = (V, E, s, A) is a maximal (with
respect to set inclusion) set of vertexes C ⊆ V such that for each u, v ∈ C, the
vertex v is reachable from u and vice versa. The quotient graph of G, Q(G), is
a graph (W, H) where W is the set of the SCCs of G and (C1, C2) ∈ H if and
only if C1 �= C2 and there exist r ∈ C1, s ∈ C2 such that (r, s) ∈ E. The height
of the graph G, h(G), is the length of the longest path in the quotient graph of
G (note that the quotient graph is acyclic). A strongly connected component is

28 L. Brim

trivial if it has no edges, initial if it has no predecessor in the quotient graph,
and accepting if it contains an accepting vertex.

The inspiration for the distributed SCC-based algorithm for detection of ac-
cepting cycles is taken from symbolic algorithms for cycle detection, namely from
SCC hull algorithms. SCC hull algorithms compute the set of vertexes contain-
ing all accepting components. Algorithms maintain the approximation of the set
and successively remove non-accepting components until they reach a fixpoint.
Different strategies to remove non-accepting components lead to different algo-
rithms. An overview, taxonomy, and comparison of symbolic algorithms can be
found in independent reports [20] and [30].

As the base for the enumerative algorithm presented here the One Way Catch
Them Young strategy [20] has been chosen. The enumerative algorithm works
on individual vertexes rather than on sets of vertexes as is the case in symbolic
approach. A component is removed by removing its vertexes. The algorithm
employs two rules to remove vertexes of non-accepting components:

– if a vertex is not reachable from any accepting vertex then the vertex does
not belong to any accepting component and

– if a vertex has in-degree zero then the vertex does not belong to any accepting
component.

Note that an alternative set of rules can be formulated as

– if no accepting vertex is reachable from a vertex then the vertex does not
belong to any accepting component and

– if a vertex has out-degree zero then the vertex does not belong to any ac-
cepting component.

This second set of rules results in an algorithm which works in a backward manner
and we will not describe it explicitly here.

The presented SCC-based algorithm in its forward version requires the entire
automaton graph to be generated first. The same is true for the backward version.
Moreover, the backward version actually needs to store the edges to be able to per-
form backward reachability. This is however payed out by relaxing the necessity to
compute successors, which is in fact a very expensive operation in practise.

Time complexity of the algorithm is O(h ·m) where h = h(G). Here the factor
m comes from the computation of Reachability and Elimination functions and
the factor h relates to the number of external iterations. In practise, the number
of external iterations is very small even for large graphs. This observation is
supported by experiments in [20] with the symbolic implementation and hard-
ware circuits problems. Similar results are communicated in [29] where heights
of quotient graphs were measured for several models. As reported, 70% of the
models has height smaller than 50.

A positive aspect of SCC-based algorithms is their effectiveness for weak au-
tomaton graphs. A graph is weak if each SCC component of G is either fully
contained in A or is disjoint with A. For weak graphs one iteration of the SCC-
based algorithm is sufficient to decide accepting cycles. The studies of temporal

Distributed Verification 29

properties [18,15] reveal that verification of up to 90% of LTL properties leads
to weak automaton graphs.

Last but not least, SCC-based algorithms can be effortlessly extended to au-
tomaton graphs for other types of nondeterministic word automata like gener-
alised Büchi automata and Streett automata.

2.3 Maximal Number of Accepting Predecessors (NEGC)

Consider maximal number of accepting vertexes on a path from the source to a
vertex, the maximum being taken over all paths. For vertexes on an accepting
cycle the maximum does not exist because extending a path along the cycle adds
at least one accepting vertex.

For computing the maximal number of accepting predecessors the algorithm
maintains for every vertex v its “distance” label d(v) giving the maximal num-
ber of accepting predecessors, parent vertex p(v), and status S(v) ∈ {unreached ,
labelled , scanned}. Initially, d(v) = ∞, p(v) = nil , and S(v) = unreached for
every vertex v. The method starts by setting d(s) = 0, p(s) = nil and S(s) =
labelled , where s is the initial vertex. At every step a labelled vertex is selected
and scanned. When scanning a vertex u, all its outgoing edges are relaxed (im-
mediate successors are checked). Relaxation of an edge (u, v) means that if d(v)
is an accepting vertex then d(v) is set to d(u) + 1 and p(v) is set to u. The
status of u is changed to scanned while the status of v is changed to labelled.
If all vertexes are either scanned or unreached then d gives the maximal num-
ber of accepting predecessors. Moreover, the parent graph Gp is the graph of
these “maximal” paths. More precisely, the parent graph is a subgraph Gp of G
induced by edges (p(v), v) for all v such that p(v) �= nil .

Different strategies for selecting a labelled vertex to be scanned lead to dif-
ferent algorithms. When using FIFO strategy to select vertexes, the algorithm
runs in O(m · n) time in the worst case. For graphs with reachable accepting
cycles there is no “maximal” path to the vertexes on an accepting cycle and
the scanning method must be modified to recognise such cycles. The algorithm
employs the walk to root strategy which traverses a parent graph. The walk to
root strategy is based on the fact (see e.g. [16]) that any cycle in parent graph
Gp corresponds to an accepting cycle in the automaton graph.

The walk to root method tests whether Gp is acyclic. Suppose the parent
graph Gp is acyclic and an edge (u, v) is relaxed, i.e. d(v) is decreased. This
operation creates a cycle in Gp if and only if v is an ancestor of u in the current
Gp. Before applying the operation, we follow the parent pointers from u until we
reach either v or s. If we stop at v a cycle is detected. Otherwise, the relaxation
does not create a cycle. However, since the path to the initial vertex can be long,
the cost of edge relaxation becomes O(n) instead of O(1). In order to optimise
the overall computational complexity, amortisation is used to pay the cost of
checking Gp for cycles. More precisely, the parent graph Gp is tested only after
the underlying scanning algorithm performs Ω(n) relaxations. The running time
is thus increased only by a constant factor. The worst case time complexity of
the algorithm is thus O(n · m).

30 L. Brim

2.4 Back-Level Edges (BLEDGE)

The algorithm builds on breadth-first search (BFS) exploration of the graph.
BFS is typically used in graph algorithms that work with distances and distances
can also be used to characterise cycles in a graph.

Distance of a vertex u ∈ V , d(u), is the length of a shortest path from the
initial vertex to the vertex u. The set of vertexes with the same distance is called
level. An edge (u, v) ∈ E is called a back-level edge if d(u) ≥ d(v).

The key observation connecting the cycle detection problem with the back-
level edge concept is that every cycle contains at least one back-level edge. Back-
level edges are therefore used as triggers which start a cycle detection. However,
it is too expensive to test every back-level edge for being a part of a cycle. The
algorithm therefore integrates several optimisations and heuristics to decrease
the number of tested edges and speed-up the cycle test.

The BFS procedure which detects back-level edges runs in time O(m + n).
Each back-level edge has to be checked to be on a cycle, which requires linear
time O(m + n) as well. In the worst case there can be O(m) back-level edges,
hence the overall time complexity of the algorithm is O(m · (m + n)). Its space
complexity is O(m + n).

3 Comparing the Algorithms

To compare the algorithms we can use the standard asymptotic complexity mea-
sures. In Table 1 we summarise time and space complexity of the algorithms,
where n is the number of vertexes, m is the number of edges, h is the height of
the SCC tree, and a is the number of accepting vertexes in the graph. It seems
that Nested DFS and Tarjan’s algorithm are asymptotically the best algorithms,
both sharing the first place. However, Nested DFS needs only two additional bits,
while Tarjan’s algorithm needs to store more data to handle DFS and comple-
tion numbers. Despite being asymptotically the same, and in fact optimal, in
reality Nested DFS is more space efficient than Tarjan’s algorithm. All the other
algorithms are generally worse. This is true for the worst case analysis when
considering these algorithms as sequential ones.

Table 1. Asymptotic time and space complexity

Time complexity Space complexity

Nested DFS O(m + n) O(n)
Tarjan’s algorithm O(m + n) O(n)
MAP O(a2 · m) O(n)
BLEV O(m · (m + n)) O(m + n)
NEGC O(m · n) O(m + n)
OWCTY O(h · (m + n)) O(n)

Distributed Verification 31

The situation looks quite different if we want to adapt the algorithms for
the distributed environment. Both, the Nested DFS and the Tarjan’s algorithm
perform badly, because they rely on depth first search postorder of vertexes and
in a distributed environment we need to use very expensive techniques to assure
the postorder. On the other hand, all the other algorithms can be parallelised
easily. The reason is that they do not use any particular order of vertexes and
the graph can be explored using local information only.

Still, despite the purely theoretical asymptotic worst case differences, there are
many other, often more practical, aspects that may make a difference. Typical
example is, when we consider some particular instances of the problem, like
graphs with or without accepting cycles. Consider the algorithm MAP. If there
is no accepting cycle in the graph, the number of iterations is typically very
small in comparison to the size of the graph (up to 40–50). Thus, the algorithm
exhibits nearly linear performance. Some other points have been also made when
describing the algorithms.

Often we do not know the problem belongs to the specific instance class.
However, sometimes we might be able to classify the problem instance in advance
and use the most appropriate algorithm to solve the problem.

In the case of automata-based approach to LTL model checking the product
automaton that originates from synchronous product of the property and system
automata. Hence, vertexes of product automaton graph are ordered pairs. An
interesting observation is that every cycle in a product automaton graph emerges
from cycles in system and property automaton graphs.

As the property automaton origins from the LTL formula to be verified, it
is typically quite small and can be pre-analysed. In particular, it is possible to
identify all strongly connected components of the property automaton graph.
Cluster-based algorithms use a partition function which distributes vertexes of
the graph among the participating workstations so that every workstation main-
tains only a part of the graph. Respecting strongly connected components of the
property automaton, a partition function preserving cycle locality can be de-
fined. The partitioning strategy is to assign all vertexes that project to the same
strongly connected component of the property automaton graph to the same
workstation. Since no cycle is split it is possible to employ localised Nested
DFS algorithm to perform local accepting cycle detection simultaneously on all
participating workstations.

Yet another interesting information can be drawn from the property automa-
ton graph decomposition. Maximal strongly connected components can be clas-
sified into three categories:

Type F: (Fully Accepting) Any cycle within the component contains at least
one accepting vertex. (There is no non-accepting cycle within the compo-
nent.)

Type P: (Partially Accepting) There is at least one accepting cycle and one
non-accepting cycle within the component.

Type N: (Non-Accepting) There is no accepting cycle within the component.

32 L. Brim

Realising that a vertex of a product automaton graph is accepting only if the
corresponding vertex in the property automaton graph is accepting it is possible
to characterise types of strongly connected components of product automaton
graph according to types of components in the property automaton graph. Clas-
sification of components into types N , F , and P is useful in other cluster-based
algorithms presented in this paper.

It is evident, and we have already explicitly highlighted this with the algorithm
presentation on several places, that performing empirical studies for comparing
actual relative performance of algorithms so as to study their amenability for
use in LTL model checking is of crucial importance and in some sense even
more important than the traditional asymptotic view. This may lead to the
discovery of problem instances for which the performances of solving algorithms
are clearly different. Other important results of empirical investigations include
assessing heuristics for hard problems, characterising the asymptotic behaviour
of complex algorithms, discovering the speed-up achieved by parallel algorithms
and studying the effects of the memory hierarchy and of communication on real
machines, thus helping in predicting performance and finding bottlenecks in real
systems. Experiments can thus help measure many practical indicators that may
be extremely difficult to predict theoretically.

A careful tuning of the code, as well as the addition of ad-hoc heuristics and
local hacks, may dramatically improve the performances of some algorithms, al-
though the theoretical asymptotic behaviour may be not affected. Unfortunately,
it may be sometimes difficult to draw general conclusions about algorithms from
experiments. One of the common pitfall is the irreproducibility of experimental
results for distributed algorithms.

4 Conclusions

Distributed verification is a new emerging field. Extending the techniques as
known from the sequential world adds significant complications and often re-
quires entirely new approaches. In designing practical parallel solutions for dis-
tributed verification we need to change our attitude. The key steps for their
effective deployment in industry and real applications is to forget about as-
ymptotics, use algorithm engineering techniques and experimental algorithmics,
consider often overlooked, yet practically important issues such as hidden con-
stant factors, effects of the memory hierarchy, implications of communication
complexity, numerical precision, and use of heuristics. The new demand for dis-
tributed verification algorithms that are of practical utility has raised the need
to refine and reinforce the traditional theoretical approach.

References

1. D. Bader, B. Moret, and P. Sanders. Algorithm Engineering for Parallel Computa-
tion. In Experimental Algorithmics, volume 2547 of LNCS, pages 1–23. Springer-
Verlag, 2002.

Distributed Verification 33

2. T. Bao and M. Jones. Time-Efficient Model Checking with Magnetic Disks. In
Proc. Tools and Algorithms for the Construction and Analysis of Systems, volume
3440 of LNCS, pages 526–540. Springer-Verlag, 2005.

3. J. Barnat, L. Brim, and J. Chaloupka. Parallel Breadth-First Search LTL Model-
Checking. In Proc. 18th IEEE International Conference on Automated Software
Engineering, pages 106–115. IEEE Computer Society, 2003.

4. J. Barnat and I. Černá. Distributed Breadth-First Search LTL Model Checking.
Formal Methods in System Design, 2006. to appear.

5. Jǐŕı Barnat. Distributed Memory LTL Model Checking. PhD thesis, Faculty of
Informatics, Masaryk University Brno, 2004.

6. G. Behrmann, T. S. Hune, and F. W. Vaandrager. Distributed Timed Model
Checking – How the Search Order Matters. In Proc. Computer Aided Verification,
volume 1855 of LNCS, pages 216–231. Springer, 2000.

7. A. Bell and B. R. Haverkort. Sequential and distributed model checking of petri
net specifications. Int J Softw Tools Technol Transfer, 7(1):43–60, 2005.

8. S. Blom and S. Orzan. A Distributed Algorithm for Strong Bisimulation Reduction
Of State Spaces. Int J Softw Tools Technol Transfer, 7(1):74–86, 2005.

9. B. Bollig, M. Leucker, and M. Weber. Parallel Model Checking for the Alternation
Free μ-Calculus. In Proc. Tools and Algorithms for the Construction and Analysis
of Systems, volume 2031 of LNCS, pages 543 – 558. Springer-Verlag, 2001.

10. L. Brim, I. Černá, P. Krčál, and R. Pelánek. Distributed LTL Model Checking
Based on Negative Cycle Detection. In Proc. Foundations of Software Technology
and Theoretical Computer Science, volume 2245 of LNCS, pages 96–107. Springer-
Verlag, 2001.

11. L. Brim, I. Černá, P. Krčál, and R. Pelánek. How to Employ Reverse Search in Dis-
tributed Single-Source Shortest Paths. In Proc. Theory and Practice of Informatics
(SOFSEM), volume 2234 of LNCS, pages 191–200. Springer-Verlag, 2001.

12. L. Brim, I. Černá, P. Moravec, and J. Šimša. Accepting Predecessors are Bet-
ter than Back Edges in Distributed LTL Model-Checking. In Formal Methods in
Computer-Aided Design (FMCAD 2004), volume 3312 of LNCS, pages 352–366.
Springer-Verlag, 2004.

13. L. Brim, I. Černá, P. Moravec, and J. Šimša. How to Order Vertices for Distrib-
uted LTL Model-Checking Based on Accepting Predecessors. In 4th International
Workshop on Parallel and Distributed Methods in verifiCation (PDMC’05), July
2005.

14. I. Černá and R. Pelánek. Distributed Explicit Fair cycle Detection (Set Based Ap-
proach). In Model Checking Software. 10th International SPIN Workshop, volume
2648 of LNCS, pages 49–73. Springer-Verlag, 2003.

15. I. Černá and R. Pelánek. Relating Hierarchy of Temporal Properties to Model
Checking. In Proc. Mathematical Foundations of Computer Science, volume 2747
of LNCS, pages 318–327. Springer-Verlag, 2003.

16. B. V. Cherkassky and A. V. Goldberg. Negative-Cycle Detection Algorithms.
Mathematical Programming, 85:277–311, 1999.

17. C. Courcoubetis, M.Y. Vardi, P. Wolper, and M. Yannakakis. Memory-Efficient
Algorithms for the Verification of Temporal Properties. Formal Methods in System
Design, 1:275–288, 1992.

18. M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Property Specification Patterns
for Finite-State Verification. In Proc. Workshop on Formal Methods in Software
Practice, pages 7–15. ACM Press, 1998.

34 L. Brim

19. S. Edelkamp and S. Jabbar. Large-Scale Directed Model Checking LTL. In Model
Checking Software: 13th International SPIN Workshop, volume 3925 of LNCS,
pages 1–18. Springer-Verlag, 2006.

20. K. Fisler, R. Fraer, G. Kamhi, M. Y. Vardi, and Z. Yang. Is there a best symbolic
cycle-detection algorithm? In Proc. Tools and Algorithms for the Construction and
Analysis of Systems, volume 2031 of LNCS, pages 420–434. Springer-Verlag, 2001.

21. H. Garavel, R. Mateescu, and I. Smarandache. Parallel State Space Construction
for Model-Checking. In Proc. SPIN Workshop on Model Checking of Software,
volume 2057 of LNCS, pages 216–234. Springer-Verlag, 2001.

22. O. Grumberg, T. Heyman, N. Ifergan, and A. Schuster. ”achieving speedups in
distributed symbolic reachability analysis through asynchronous computation”. In
Correct Hardware Design and Verification Methods, 13th IFIP WG 10.5 Advanced
Research Working Conference, CHARME 2005, Lecture Notes in Computer Sci-
ence, pages 129–145. Springer, 2005.

23. O. Grumberg, T. Heyman, and A. Schuster. Distributed Model Checking for μ-
calculus. In Proc. Computer Aided Verification, volume 2102 of LNCS, pages 350–
362. Springer-Verlag, 2001.

24. M. Hammer and M. Weber. ”To Store or Not To Store” reloaded: Reclaiming
memory on demand. In Luboš Brim, Boudewijn Haverkort, Martin Leucker, and
Jaco van de Pol, editors, Formal Methods: Applications and Technology (FMICS +
PDMC), volume 4346 of Lecture Notes in Computer Science, pages 52–67. Springer,
August 2006.

25. B. R. Haverkort, A. Bell, and H. C. Bohnenkamp. On the Efficient Sequential and
Distributed Generation of Very Large Markov Chains From Stochastic Petri Nets.
In Proc. 8th Int. Workshop on Petri Net and Performance Models, pages 12–21.
IEEE Computer Society Press, 1999.

26. G. J. Holzmann. The Spin Model Checker: Primer and Reference Manual. Addison-
Wesley, 2003.

27. G. J. Holzmann, D. Peled, and M. Yannakakis. On Nested Depth First Search.
In Proc. SPIN Workshop on Model Checking of Software, pages 23–32. American
Mathematical Society, 1996.

28. S. Jabbar and S. Edelkamp. Parallel External Directed Model Checking with
Linear I/O. In Verification, Model Checking, and Abstract Interpretation: 7th
International Conference, VMCAI 2006, volume 3855 of LNCS, pages 237–251.
Springer-Verlag, 2006.

29. R. Pelánek. Typical Structural Properties of State Spaces. In Proc. of SPIN
Workshop, volume 2989 of LNCS, pages 5–22. Springer-Verlag, 2004.

30. K. Ravi, R. Bloem, and F. Somenzi. A Comparative Study of Symbolic Algorithms
for the Computation of Fair Cycles. In Proc. Formal Methods in Computer-Aided
Design, volume 1954 of LNCS, pages 143–160. Springer-Verlag, 2000.

31. J. Reif. Depth-first Search is Inherently Sequential. Information Proccesing Letters,
20(5):229–234, 1985.

32. U. Stern and D.L. Dill. Using magnetic disc instead of main memory in the murϕ
verifier. In Proc. of Computer Aided Verification, volume 1427 of LNCS, pages 172
– 183. Springer-Verlag, 1998.

33. R. Tarjan. Depth First Search and Linear Graph Algorithms. SIAM Journal on
Computing, pages 146–160, Januar 1972.

34. M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program
verification. In Proc. IEEE Symposium on Logic in Computer Science, pages 322–
331. Computer Society Press, 1986.

An Easy-to-Use, Efficient Tool-Chain to Analyze
the Availability of Telecommunication

Equipment

Kai Lampka1, Markus Siegle1, and Max Walter2

1 Universität der Bundeswehr München, Institut für Technische Informatik
{kai.lampka,markus.siegle}@unibw.de

2 Technische Universität München, Lehrstuhl für Rechnertechnik und
Rechnerorganisation

max.walter@in.tum.de

Abstract. The tool OpenSESAME offers an easy-to-use modeling
framework which enables realistic availability and reliability analysis of
fault-tolerant systems. Our symbolic engine, which is based on an exten-
sion of binary decision diagrams (BDDs), is capable of analyzing Markov
reward models consisting of more than 108 system states. In this paper,
we introduce a tool chain where OpenSESAME is employed for specify-
ing models of fault-tolerant systems, and at the back end our symbolic
engine is employed for carrying out numerical Markov reward analysis.
For illustrating the applicability of this approach, we analyze a model
of a fault-tolerant telecommunication service system with N redundant
modules, where the system is available as long as at least K modules
are available. Based on this model, it is shown, that the suggested tool
chain has more modeling power than traditional combinatorial methods,
e.g. simple reliability block diagrams or fault trees, is still easy-to-use if
compared to other high-level model description techniques, and allows
the analysis of complex system models where other tools fail.

Keywords: Reliability and Availability Analysis, Markov Reward Model,
State Space Explosion Binary Decision Diagram, Reliability Block
Diagrams.

1 Introduction

Motivation: Obtaining measurement data in order to quantify the reliabil-
ity and availability (RA) of a system is often very difficult in practice, or even
impossible. Thus one is restricted to analyzing a system (or high-level) model,
rather than analyzing the system directly. Reliability block diagrams (RBD) are
an adequate technique for describing systems, when RA-issues are emphasized.
Furthermore, RBDs are a well accepted method in industrial practice. However,
using RBDs assumes that, firstly, all failure and repair events in the system are
stochastically independent, and secondly, that each component can be in two

L. Brim et al. (Eds.): FMICS and PDMC 2006, LNCS 4346, pp. 35–50, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

36 K. Lampka, M. Siegle, and M. Walter

states only (active or failed). In contrast, Markov Reward models (MRMs) pro-
vide a powerful mathematical framework for computing system state probabili-
ties and thus quantifying a system under study. The modeling power of MRMs
is much higher than that of RBDs: Each component can be described by an
arbitrary number of states (e.g. active, passive, and several failed states), and
arbitrary inter-component dependencies (such as failure propagation, failures
with a common cause, or limited repair capacities) can be specified. In contrast
to empirical evaluation as provided by simulation studies, which is the most ac-
cepted technique in industry, MRM-based studies are restricted to models where
events occur with an exponential or zero delay. However, this restriction comes
at the benefit that MRMs allow an extensive (!) analysis, such that rare events
of fatal impact can also be assessed, where simulation studies may fail to do so.
Consequently, MRMs are an adequate formal model for analyzing in particular
industrial critical systems.

In this work we consider a tool chain, in which the tool OpenSESAME (sim-
ple but extensive structured availability modeling environment) is used as the
user interface. In this tool, systems are modeled using RBDs, which can be
enriched with intercomponent dependencies. Thus, the traditional limitations
of these easy-to-use models were overcome. OpenSESAME automatically con-
verts these diagrams into a high-level model specification (e.g. a stochastic Petri
net (SPN)). The interleaving semantics of standard high-level model descrip-
tion methods, such as SPN among others, applied for transforming the obtained
high-level model into its low-level representation (commonly denoted as state
graph (SG)), may lead to an exponential blow-up in the number of system
states. This phenomenon, commonly addressed as state space explosion prob-
lem, often hampers the analysis of complex and large systems, if not making
it impossible at all. Here symbolic methods have shown to ease the problem,
such that system models consisting of more than, say, 108 system states are still
treatable and their RA-measure are still obtainable on commodity computers.
Therefore, in the approach presented here, OpenSESAME diagrams are first con-
verted into stochastic activity networks (SAN) as accepted by the tool Möbius
[DCC+02]. Internally, the generated SANs are analysed by the zero-suppressed
multi-terminal decision diagram (ZDD)-based symbolic framework as presented
in [LS06a, LS06b]. In this paper we show, that

1. using OpenSESAME, it is much easier to create sophisticated availability
models than by e.g. directly creating the corresponding SAN manually, and

2. the proposed tool chain, which is based on ZDDs, is much more efficient
in terms of time and space compared to traditional solution methods. The
advantages stem from the fact that the traditional methods require the ex-
plicit generation of the system’s complete state space and the storage of its
transition matrix in a sparse matrix format.

Organization: The paper is organized as follows: Sec. 2 introduces the em-
ployed tool infrastructure. The model world is introduced in Sec. 3 by giving
basic definitions. The general idea of symbolically representing and numerically

An Easy-to-Use, Efficient Tool-Chain 37

solving MRMs is introduced in Sec. 4. An industrial case study for evaluating
our framework is presented in Sec. 5. Sec. 6 concludes the paper by indicating
some related work, by summarizing the achieved innovations and mentioning
future steps.

2 Tool Chain

For analyzing systems we employ the tool chain as illustrated in Fig. 1. Via the
process of abstraction and simplification one builds a system model, specified
as an extended RBD within the tool OpenSESAME. The obtained RA-model
is then mapped onto a Stochastic Activity Network (SAN). A SAN is a form of
extended Generalized Stochastic Petri Net (GSPN), which also contains reward
functions, employed here for describing the RA-measures of interest. The mod-
eling tool Möbius supports the specification of high-level models of that kind.
Our new symbolic engine, which possesses an interface to Möbius, can then be
employed for generating a symbolic representation of the specified MRM (SAN
+ reward functions). The numerical solution of the symbolically represented
low-level MRM allows finally the computation of the RA-measures of interest.
In the following we briefly introduce the different components as employed in
the suggested tool chain.

OpenSESAME[WT04,WT05]:Thegraphical user interface ofOpenSESAME
allows for the creation of traditional combinatorial availability models, which can
be enriched with inter-component dependencies. In these models, a system is de-
fined by its components, each specified by a Mean Time To Failure (MTTF) and
Mean Time To Repair (MTTR). In addition, reliability block diagrams specify the
redundancy structure of the system, i.e. they determine which components have to
be available at the same time to make the overall system available. Several kinds of
inter-component dependencies can be specified in an OpenSESAME input model
which greatly increases the modeling power without compromising its usability as
shown in Sec. 3.1 of this paper.

Möbius ModelingTool: Möbius is a software tool for performance and reliabil-
ity evaluation of discrete event systems. Currently, Möbius supports several model
specification formalisms [DCC+02], includingStochasticActivityNetworks (SAN),

System

analyzed

High−level

classes of
the AFI

C++
SAN model
description

Generation and
RA−measures

of the

under study

OpenSESAME Möbius Symbolic Engine

to be numerical solution of
symbolically represented system

low−level MRM

model and
its reward

functions

SANSystem
model as
extended

RBD

Fig. 1. Tool chain

38 K. Lampka, M. Siegle, and M. Walter

an extension of GSPNs. Since OpenSESAME can generate GSPNs out of its input
diagrams, Möbius can be used in our tool chain.

Within Möbius, the SANs are mapped onto the Abstract Functional Interface
(AFI), which is implemented in C++ and constitutes the interface between the
state graph generator and the (high-level) SAN model specification. Each place
of the SAN is hereby mapped onto a state variable (SV). Consequently, during
state graph exploration, a state of the system model is represented by the values
of the SVs, where the ordered tuple of n SVs is commonly denoted as the state
vector. However, rather than specifying now the RA-measures directly on the
level of the state graph, one may define reward functions on the level of the
SAN model specification. In the tool chain presented here, these rate rewards
are created automatically by OpenSESAME.

Symbolic Engine: The new symbolic engine for analyzing Möbius models with
very large state graphs is based on ZDDs, where the implementation consists of
the following four modules:

1. A module for the explicit generation of states, which make uses of Möbius’
AFI and thus constitutes the interface between the symbolic engine and
Möbius.

2. The symbolic state graph generation engine, which generates a symbolic
representation of the CTMC of the low-level MRM.

3. A ZDD-library, which is based on the CUDD-package [Som]. This library
mainly contains the C++ class definition of ZDDs, the new recursive algo-
rithms for manipulating them and their operator-caches.

4. A library for computing the desired RA-measures on the basis of the sym-
bolically represented MRM. This module contains:
(a) steady state and transient numerical solvers for computing the state

probabilities.
(b) algorithms for efficiently generating symbolic representations of rate re-

ward functions and for computing the first and second moment of their
probability distributions.

3 Model World

3.1 OpenSESAME Input Model

An OpenSESAME model as seen by the user comprises component tables, re-
liability block diagrams, failure dependency diagrams, repair group tables, and
variable tables. Not all model parts are necessary, usually one starts with one
component table and a block diagram only. Then the model can be refined by
adding additional tables and diagrams. In the following, the individual parts of
the model are described.

The component tables list all components of which the system consists. Each
component type has a unique name, a mean time to failure (MTTF), and a
mean time to repair (MTTR). If the system contains several components of the

An Easy-to-Use, Efficient Tool-Chain 39

3

part A (config 1)

part A (config 2)

part A (config 3)

part A (config 4)

part A (config 5)

part B (config 1)

part B (config 3)

part B (config 4)

part B (config 5)

part B (config 2)

Fig. 2. “3-out-of-5:G” system. The system is available, if at least 3 out of 5 configura-
tions are available. In this case, each configuration comprises two components: part A
and part B.

same type, the table also lists the number of components of this type. Further-
more, each component may have either a dedicated repair person or is allotted
to a repair group (see below). For small and medium sized models, a single
component table will be sufficient. For large models, several tables can be used
to group related components. An extended version of reliability block diagrams
(RBD) is used to model the redundancy structure of the system. RBDs are
undirected graphs where each edge is labeled with a component. A component
may appear several times in the same RBD. Two special nodes s and t define a
Boolean system which is available, if there is a connection between these nodes
and unavailable otherwise. As components can be unavailable so can the edges:
calculating the probability whether s and t are connected yields the availability
of the modeled system. In OpenSESAME, several modern extensions to tradi-
tional RBDs were implemented. First, the user may specify more than two border
nodes. This allows for calculating the availabilities of subsystems in addition to
the overall availability. Second, edges may be labeled with a sub-RBD instead
of a component. This allows for building a hierarchy of RBDs. Thus, even large
systems can be modeled in a concise way. Third, so-called “k-out-of-N:G” edges
are supported.

As an example, Figure 2 shows a “3-out-of-5:G” system which is available if at
least 3 of its 5 so-called configurations are available. A configuration may be a
simple component, or an arbitrarily large sub-diagram. Alternatively, the system
could be modeled using regular RBDs without “k-out-of-N:G” edges, however,
such an RBD would comprise 30 edges.

Finally, as a unique feature of OpenSESAME, the model can be enriched
with inter-component dependencies. Because some dependencies are related to
the redundancy structure of the system, it makes sense to add these depen-
dencies to the RBD. For example, in many systems fault tolerance is achieved
using fault recovery techniques. In these systems, the redundant components
are in passive or standby mode as long as the system is fault free. In contrast
to so-called active-active systems which are based on fault masking, the redun-
dant components can be used for non-critical tasks. Furthermore, in systems with

40 K. Lampka, M. Siegle, and M. Walter

fault recovery, a redundant component can possibly replace several components,
which allows the construction of N+1 redundant systems. However, such systems
also have a drawback compared to systems based on fault masking: the failure of
an active component must be detected, localized and isolated, and the redundant
component must be activated after the failure of the primary component. During
this so-called fail-over time, the system is unavailable. To avoid over-optimistic
results and unfair comparisons, availability models should therefore take into
account possible fail-over times of fault recovery mechanisms. In OpenSESAME,
k-of-N:G edges can therefore be attributed with a fail-over time.

A detailed description of all features of OpenSESAME is outside the scope
of this paper. Instead, the interested reader is referred to previous publications
[WS05, WT05]. For an overview on the transformation process of OpenSESAME
input models into GSPNs and SANs one may refer to [WT04].

3.2 Properties of High-Level MRMs

Via state graph generation a high-level model description and its set of user-
defined rate rewards can be mapped to a continuous time Markov chain (CTMC),
where each system state is equipped with a rate reward1. This yields what is
commonly denoted as (low-level) Markov reward model (MRM). In the following
we define some properties of high-level model descriptions, as required for our
symbolic framework for efficiently generating symbolic representations of MRMs.

Static Properties: A high-level model M consists of a finite ordered set of dis-
crete state variables (SVs) si ∈ S, where each can take values from a finite subset
of the naturals. Each state of the model is thus given as a vector �s ∈ S ⊂ N|S|. A
model has a finite set of activities (Act), where the enabling and execution of an
activity l depends on a set of SVs (SD

l). Two activities are defined to be depen-
dent if their sets of dependent SVs are not disjoint. We also define a projection
function χ : (SD

l , N|S|) −→ N|SD
l | which yields the sub-vector consisting of the

dependent SVs only. We use the shorthand notation �sdl
:= χ(SD

l , �s), where �sdl

is called the activity-local marking of state �s with respect to activity l.

Dynamic Properties: When an activity is executed, the model evolves from
one state to another. For each activity l ∈ Act we have a transition function
δl : S −→ S, whose specific implementation depends on the model description
method. Concerning the target state of a transition, we use the superscript of a
state descriptor to indicate the sequence of activities leading to that state. It is
assumed that the computation of δl depends solely on those positions of �s refer-
ring to the SVs contained in SD

l . By state graph exploration one can construct
the successor-state relation as a set of quadruples T ⊆ (S×Act×R>0×S), which
is the set of transitions of a stochastic labeled transition system (SLTS), i.e. the

1 The presented methodology can also take care of impulse rewards, but these are not
used for the considered application case study.

An Easy-to-Use, Efficient Tool-Chain 41

underlying activity-labeled CTMC. If activity labels are removed, transitions
between the same pair of states are aggregated via summation of the individual
rates.

Rate Rewards: Rate rewards enable the modeler to define complex perfor-
mance measures on the basis of the high-level model, rather than on the level of
the underlying CTMC [SM91]. A rate reward defines the reward gained by the
model in a specific state. This gives us the following setting: A rate reward r
defined on a high-level model is specified by the rate reward returning function
Rr : S → R+, and where SD

r ⊆ S is the set of SVs on which the computation of
r actually depends. Analogously to activity-local markings we will also employ
the shorthand notation �sdr := χ(SD

r , �s). The set of all rate rewards defined for
a given high-level model, will be denoted as R.

4 Symbolic Representation and Solution of MRMs

4.1 Symbolic Representation of Low-Level Markov Reward Models

In this section, zero-suppressed multi-terminal binary DDs (ZDDs) are intro-
duced, and it will be shown how this symbolic data structure can be employed
for representing CTMCs and their reward functions.

The ZDD Data Structure: Different types of symbolic data structures have
been employed successfully for compactly representing very large labeled Markov
chains. In a Zero-suppressed BDD (ZBDD) [Min93], the skipping of a variable
means that this variable takes the value 0. Thus, ZBDDs are more compact than
the original BDDs [Bry86] when representing Boolean functions whose satisfac-
tion set is small and contains many 0-assignments. A previous paper [LS06a]
introduced the multi-terminal version of ZBDDs, which we call zero-suppressed
multi-terminal binary decision diagrams (ZDD). Analogously to algebraic de-
cision diagrams (ADDs) [ADD97], ZDDs permit the representation of pseudo-
Boolean functions. It has been found that, for our area of application, the ZDD-
based representation is more compact than the ADD-based representation by
a factor of approximately two to three, which has the positive effect that the
construction and manipulation times of the symbolic representations, as well as
the times for the numerical solution of the represented MRM are reduced by
about the same factor [LS06a, LS06b].

ZDD-Based Representation of SLTS: By state graph exploration one can
construct the set of transitions of the stochastic labeled transition system
(SLTS). Each transition within an activity-labeled SLTS T can then be en-
coded by applying a binary encoding scheme which represents the transition
(�s l,λ−→ �s l) as the bit-vector

(
EAct(l), ES(�s), ES(�s l)

)
. The rate λ is hereby un-

accounted, since it will be stored in a terminal node of the ZDD. The individual
bit positions of the obtained vectors correspond to the Boolean variables of the
ZDD. Given a ZDD-based representation of a SLTS, one simply has to abstract

42 K. Lampka, M. Siegle, and M. Walter

over the binary encoded activity labels, in order to obtain a symbolic represen-
tation of the corresponding transition rate matrix. Hereby the boolean variables
holding the binary encoded row and column indices are ordered in an inter-
leaved way. Such an ordering is a commonly accepted heuristics for obtaining
small BDD sizes, and it also works well for ZDDs.

Symbolic Representation of Rate Reward Functions: Having pairs of
binary encoded system states and rate rewards, one obtains a pseudo-boolean
function for each reward specification. This function can once again be repre-
sented by means of a ZDD.

4.2 Generating and Solving the Low-Level Markov Reward Model

The top-level algorithm for generating and solving low-level Markov reward mod-
els can be divided into three main phases: At first one derives a symbolic rep-
resentation of the CTMC from the high-level model. Secondly one computes
steady-state or transient state probabilities. In the third phase, the symbolically
represented CTMC enables one to generate symbolic representations of the rate
reward functions. Their different stochastic moments can be efficiently computed
via BDD-traversal. The main idea of our approach is to limit the explicit explo-
ration and explicit execution of reward functions only to fractions of the low-level
MRM, where the missing parts are generated via ZDD manipulations. In con-
trast to standard methods, this strategy leads to significant runtime-benefits,
where the employment of ZDDs yields significant reductions in memory space.

Phase 1: Constructing a Symbolic Representation of a CTMC [LS06a]:
The main idea of the activity-local state graph generation scheme is the parti-
tioning of the CTMC or the SLTS T to be generated into sets of transitions with
label l ∈ Act, where each state is reduced to the activity-dependent markings:

T l := {(�sdl
, l, λ, �s l

dl
) | �sdl

= χ(SD
l , �s) ∧ �s l

dl
= χ(SD

l , �s l) ∧ (�s, l, λ, �s l) ∈ T } (1)

During state graph generation the activity-local transitions T l are successively
generated, where each is encoded by its own (activity-local) ZDD Zl, which solely
depends on the Boolean variables encoding the dependent SVs of activity l. The
overall transition relation is then obtained by executing a symbolic composition
scheme:

ZT :=
∑

l∈Act

Zl · 1⊥l,

where in the above equation 1⊥l represents the pairwise identity over the Boolean
variables encoding activity l’s set of independent SVs (SI

l = S \ SD
l). One may

note, that due to the Apply-algorithm of [Bry86] and derivatives thereof, that
Zl · 1⊥l may in general not yield the Kronecker-product of the encoded matrices.
The ZDD ZT thus constructed encodes a set of potential transitions, therefore
at this point it is necessary to perform symbolic reachability analysis. On the
other hand symbolic composition might also result in states triggering new model

An Easy-to-Use, Efficient Tool-Chain 43

behavior. In case where such states exist, a new round of explicit state graph
exploration, encoding, composition and symbolic reachability analysis follows.
Several rounds may be required until a global fix point is reached and a complete
representation of the user-defined CTMC is constructed.
The advantages of the activity-local scheme can be summarized as follows:

1. In general, only a small fraction of the transitions of the Markov chain needs
to be generated explicitly, whereas the bulk of the transitions is generated
during symbolic composition.

2. The scheme does not require any particular model structure. In particular,
the method is not restricted to structures that can be represented by a
Kronecker descriptor.

3. The model is partitioned automatically at the level of the individual activi-
ties, i.e. a user-defined partitioning is not necessary.

4. The composition of the individual “activity-local” portions of the Markov
chain is carried out efficiently at the level of the symbolic data structure.

Phase 2: ZDD-Based Solution [LS06b]: Once the symbolic representation
of the CTMC, i.e. its transition rate matrix, is generated, probabilities for each
system state are computed. The solvers considered in this paper employ an ap-
proach in which the generator matrix is represented by a symbolic data structure
and the probability vectors are stored as arrays [Par02]. If n Boolean variables
are used for state encoding, there are 2n potential states, of which only a small
fraction may be reachable. Allocating entries for unreachable states in the vectors
would be a waste of memory space and would severely restrict the applicability
of the algorithms (as an example, storing probabilities as doubles, a vector with
about 134 million entries already requires 1 GByte of RAM). Therefore a dense
enumeration scheme for the reachable states has to be implemented. This is
achieved via the concept of offset-labeling. In an offset-labeled ZDD, each node
is equipped with an offset value. While traversing the ZDD encoding the ma-
trix, in order to extract a matrix entry, the row and column index in the dense
enumeration scheme can be determined from the offsets, basically by adding the
offsets of those nodes where the then-Edge is taken.

The space efficiency of symbolic matrix representation comes at the cost of
computational overhead, caused by the recursive traversal of the ZDD during
access to the matrix entries. For that reason, Parker [Par02] introduced the idea
of replacing the lower levels of the ADD by explicit sparse matrix representa-
tions, which works particularly well for block-structured matrices. In the context
of our work, we call the resulting data structure hybrid offset-labeled ZDD. The
level at which one switches from symbolic representation to sparse matrix rep-
resentation, called sparse level s, depends on the available memory space, i.e.
there is a typical time/space tradeoff.

For numerical analysis, it is well-known that the Gauss-Seidel (GS) scheme
and its over-relaxed variants typically exhibit much better convergence than the
Jacobi, Jacobi-Over-relaxation or Power method. However, Gauss-Seidel requires
row-wise access to the matrix entries, which, unfortunately, cannot be realized

44 K. Lampka, M. Siegle, and M. Walter

efficiently with ZDD-based representations. As a compromise, Parker [Par02]
developed the so-called pseudo-Gauss-Seidel (PGS) iteration scheme, where the
matrix is partitioned into blocks (not necessarily of equal size). Within each
block, access to matrix entries is in arbitrary order, but the blocks are accessed
in ascending order. PGS requires one complete iteration vector and an additional
vector whose size is determined by the maximal block size. Given a ZDD which
represents the matrix, each inner node at a specific level corresponds to a block.
Pointers to these nodes can be stored in a sparse matrix, which means that effec-
tively the top levels of the ZDD have been replaced by a sparse matrix of block
pointers. The ZDD level at which the root nodes of the matrix blocks reside is
called block level b. Overall, this yields a memory structure in which some levels
from the top and some levels from the bottom of the ZDD have been replaced by
sparse matrix structures. We call such a memory structure a block-structured
hybrid offset-labeled ZDD. The choice of an adequate s and an adequate b is
an optimization problem. In general, increasing b improves convergence of the
PGS scheme (but also increases the time per iteration), and replacing more ZDD
levels by sparse structures improves speed of access.

Phase 3: Generating Symbolic Representations of Rate Reward
Functions: After the system state probabilities are computed, one needs to
generate the symbolic representations of the rate reward functions. Hereby the
main idea is once again to exploit locality, so that the explicit evaluation of each
reward function is limited to a fraction of states of the CTMC, rather than eval-
uating the reward functions for each state. I.e. similar to activity-local transition
systems one restricts oneself to processing rate-reward-local states. The symbolic
representation Rr of the characteristic (pseudo-boolean) function of the set:

Sr := {�sdr ∈ S | Rr(�sdr) �= 0}

gives hereby a rate-reward-local reward function, such that Rr · S yields the rate
reward for each system state concerning rate reward definition r. Once state
probabilities and also symbolic representations of all rate reward functions have
been constructed, their moments can be computed via BDD-traversal. Due to
the nature of the traversal, one only visits hereby those states individually whose
reward value is not zero. The obtained stochastic moments are the desired RA
measure, e.g. unavailability.

5 Case Study: Fault-Tolerant Adjunct Processor

In the digital telephone network, so-called adjunct processors translate easy-to-
remember, location-independent virtual phone numbers (used e.g. by emergency
departments) into their location-dependent physical equivalent.2 Because ad-
junct processors play a crucial role in the network, they must be highly available.

2 For example, if one calls 112 in Germany, one will be connected to the closest fire
department.

An Easy-to-Use, Efficient Tool-Chain 45

Table 1. Default parameters of the I/O-unit submodel investigated in this paper

parameter default value description
N 6 number of configurations
K 4 number of initially active configurations
MTTF-SBCi 5 · 104 hours mean time to failure of SBC i
MTTF-RTBi 1 · 105 hours mean time to failure of RTB i
MTTR-SBCi 1 hour mean time to repair of SBC i
MTTR-RTBi 1 hour mean time to repair of RTB i

fail-over-time from configuration i
FOTij 0.1 hours to configuration j

Typically, an availability of 99.999% is demanded for such a system which cor-
responds to a mean downtime of less than 5 minutes per year. In a previous
work, we investigated the availability of an adjunct processor implementation
[GLW00] by a SPN-based model. We will now apply the proposed method to
this model to point out its benefits.

5.1 System Description

From a top-level view, the adjunct processor is a series system comprising host
units, I/O-units, hot-swap controllers, power supplies, a RAID system and so
on. Due to place restrictions, we will evaluate the I/O-subsystem only, as it is
the most complex part of the system. The other parts can be evaluated in a
similar way which is not shown here.

The I/O-unit consists of N configurations, each comprising a single board
computer (SBC) and a so-called rear transition board (RTB). All cabling is con-
nected to the RTB which allows for a quick replacement of the SBC in case of a
failure. We assume, that K <= N configurations have to be available at the same
time to make the I/O-unit available. Furthermore, we assume that each config-
uration can be in three states: active, failed, or passive. A passive (or stand-by)
configuration does not perform any work but waits until an active configuration
fails. After failure detection and localization, the I/O-unit is reconfigured which
means that one of the passive configurations becomes activated. The overall time
interval which lies between a failure and the completion of the reconfiguration
is called the fail-over-time.

A configuration fails, if either its SBC or RTB fails. This can happen to both
the active and the passive configurations. Modern architectures in the telecom-
munication systems are open systems and may contain boards from different
vendors. Thus, in general, all components of the system will have different fail-
ure and repair rates and also the fail-over times may vary. The parameters of our
model are given in Table 1. For the sake of simplicity, we assume exponentially
distributed time intervals in the following evaluations. This is acceptable for
the mean time to failures, because the effects of aging can be neglected in elec-
tronic devices. Analytic evaluation of models with non-exponentially distributed
time-intervals is an active area of research.

46 K. Lampka, M. Siegle, and M. Walter

active

passive

RTB failed

SBC failed

deact.
conf. 1

deact. deact. deact. deact. deact.
conf. 2 conf. 3 conf. 4 conf. 5 conf. 6

FOT: fail−over time
SBC: single board computer

RTB: rear transition board

both failed

MTTF
RTB 1

MTTF
RTB 1

MTTF
RTB 1

MTTF
SBC 1

MTTF
SBC 1

MTTF
SBC 1

SBC 1
MTTR

SBC 1
MTTRMTTR

RTB 1

MTTR
RTB 1

FOT FOT FOT FOT FOT FOT
1 to 1 2 to 1 3 to 1 4 to 1 5 to 1 6 to 1

Fig. 3. Single component specified as SPN

Using OpenSESAME, the I/O-unit can be modeled using the RBD shown
in Fig. 2 for the case N = 5. This model is enriched with information on the
respective fail-over-times which are necessary to switch from one configuration
to another. We think that the OpenSESAME model is quite intuitive and easy
to modify. In contrast, a SPN-based model as sketched in Fig. 3 is much more
complex. The figure shows only one sixth of the overall SPN structure for the
case N = 6. It represents configuration 1 which is one of the configurations which
are active after system startup. The remaining five configurations are modeled
with equivalent subnets, however, all subnets share the six places conf. 1-6
deact. As it can be seen, even a small fraction of the overall net is much less
readable than the RBD from Fig. 2. Moreover, changing the parameters N or
K requires a work-intensive and error-prone modification of the SPN structure.
This exemplifies the benefit of the proposed method, where OpenSESAME is
used to generate the SPN from an OpenSESAME input model which comprises
the RBD from Fig. 2, attributed with the respective fail-over-times.

5.2 Model Evaluation

Table 2.A shows the evaluation results in terms of the I/O unit’s unavailability
for the default values given in Tab. 1 and different fail-over-times. As can be
seen, the fail-over time has a significant impact on the result. Please note that if
traditional combinatorial methods like a simple RBD or fault tree analysis were
used, this would imply the assumption that the fail-over-time is zero. Thus, the
result would be highly over-optimistic as it is several orders of magnitude lower
than the correct results even for small fail-over-times.

For evaluating the efficiency of our symbolic framework, we analyzed the
adjunct processor for two different parameter sets. In the first set, we investi-
gated a “4-out-of-6” system (i.e. N = 6 and K = 4) whereas in the second set a

An Easy-to-Use, Efficient Tool-Chain 47

Table 2. Data as obtained for analyzing the case study

(A) Model specific RA-measures (system unavailability)

mean fail-over time
0 sec 10 sec 1 min 5 min 6 min

“4-out-of-6” < 5.99 · 10−13 1.67 · 10−7 9.97 · 10−7 4.93 · 10−6 5.91 · 10−6

“6-out-of-8” < 1.60 · 10−12 2.49 · 10−7 1.49 · 10−6 7.40 · 10−6 8.86 · 10−6

(B) Model specific data

states trans transe

“4-out-of-6” 9.48720 ·105 1.45607 ·107 240
“6-out-of-8” 2.61671 ·108 5.86973 ·109 544

(C) Solution times

DSPNexpress Symbolic Approach
peak mem. SG time iter. time # iter. peak mem. SG time iter. time # iter.

“4-out-of-6” 7.4 GByte 123.014 0.7315 12 36 MByte 2.50562 0.093181 46
“6-out-of-8” xxx xxx xxx xxx 4105 MByte 15.8026 40.533267 49

“6-out-of-8” system was analyzed (N = 8 and K = 6). The numerical values
were equal to the ones presented in Tab. 1. We stress that the sub-units were
not assumed to be symmetric, which resulted in Markov reward models of sub-
stantial size to be analyzed. If sub-units were symmetric, lumping techniques for
state space reduction could be exploited.

Table 2.B shows the size of the analyzed low-level MRM models as derived
from the OpenSESAME input model, via the translation to a SAN and finally
applying the symbolic state graph generation scheme. Consequently, Table 2.B
contains the number of system states (states), the number of transitions among
these system states (trans) and the number of transitions explicitly established
by our activity-local ZDD-based state graph generation scheme (transe). The
latter is extremely small, which is the main source of efficiency of the approach.

Table 2.C shows the memory and CPU-times as required for generating and
solving the MRM. Hereby the two different configurations were analyzed on a 64-
bit Opteron system with 8 GByte of RAM and a Linux OS. For demonstrating
the effectiveness of our ZDD-based framework, we also exported and analyzed the
system models with the GSPN-based tool DSPNexpress [Lin98]. Table 2.C gives
the peak memory consumption, the CPU time in secs. required for generating the
CTMC (SG time), the CPU times in secs. required for each numerical iteration
for computing the state probabilities (iter. time) and their number (# iter.) as
executed under the respective numerical solution method. As numerical solution
method, we decided to employ the pseudo-Gauss-Seidel method of [Par02] in case
of ZDDs, whereas DSPNexpress employs the generalized minimal residual method
(GMRES). As convergence criteria a relative convergence of 10−6 was taken. The
data of Table 2.C indicates that the ZDD-based framework is much more efficient
than the standard sparsematrix approachemployedwithin theDSPNexpress-tool.

48 K. Lampka, M. Siegle, and M. Walter

In case of the “6 out 8”-configuration, DSPNexpress was unable to analyze the sys-
tem model, due to a lack of RAM. Even for the smaller configuration (“4-out-of-
6”), our ZDD-based framework is more efficient. Hereby, and in contrast to sparse
matrix techniques, the bottleneck is the state-probability vector, since even for
very large systems the block-structured hybrid ZDD-based representation of the
transition rate matrix of the Markov reward model is still very compact. E.g. for the
“4-out-of-6”-configuration the ZDD-based representation of the transition rate
matrix requires 0.226 MByte only, whereas the probability vector, the iteration
vector and the vector holding the diagonal entries of the generator matrix require
14.5 MByte of RAM. Consequently the ZDD-based methodology clearly eases the
restriction on Markov reward analysis. Thus it is not surprising that the suggested
ZDD-based tool chain is still capable of computing the desired RA-measures in ap-
prox. 34 minutes, where standard methods as employed within the DSPNexpress-
tool fail to do so.

6 Conclusion

Related Work: Several techniques have been proposed to simplify the cre-
ation of state-based dependability models. One possibility is to combine several
modeling methods in one user-interface (see, e.g. [STP96, THMH98]). Another
possibility is to extend Boolean methods (e.g. [DSC00]). The approach favored
in our work, i.e. automatically creating the models from a high-level input can
also be found (see [MPB03, BB03]). Please refer to our previous work [WT04]
for a detailed comparison with OpenSESAME. However, none of these methods
uses symbolic data structures for the representation of the state space.

Based on the original Binary Decision Diagram (BDD) data structure [Bry86],
several extensions have been developed for representing not only Boolean but
also pseudo-Boolean functions, i.e. functions of the type f : Bn 	→ R, where
Algebraic Decision Diagrams (ADDs) [ADD97] are one of the best known types.
In recent years, powerful state space generation algorithms based on symbolic
data structures have been developed and implemented in software tools such
as PRISM [KNP05] and SMART [CJMS03]. While PRISM is based on ADDs,
SMART employs multi-valued decision diagrams and matrix diagrams. Using
these techniques, generating the state space and transition structure of the un-
derlying Markov model from the high-level specification is extremely fast, and
the resulting symbolic representation can be very memory efficient. Numerical
analysis based on the symbolic representation is still an active area of research.
Using the approach of offset-labeling, combined with hybrid matrix represen-
tation, as first proposed for ADDs in [Par02], it has been demonstrated that
iterative solution techniques based on symbolic data structures can be almost as
fast as sparse matrix approaches, while being much more memory efficient and
therefore able to solve much larger systems.

Summary: In this paper we presented a tool chain which takes a set of high-
level diagrams as its input. These diagrams, which comprise component tables,

An Easy-to-Use, Efficient Tool-Chain 49

reliability block diagrams, failure dependency diagrams, repair group tables, and
variable tables, yield an input model for the tool OpenSESAME. The tool auto-
matically converts this high-level model specification into a SAN as accepted by
the tool Möbius. In a second step, the obtained SAN is converted by our ZDD-
based symbolic engine into a symbolic representation of a MRM. On the basis
of this symbolic representation numerical analysis is carried out, finally yielding
the desired reliability- and availability measures of the system under study.
For illustrating the advantages of such an approach, we presented a model of
a fault-tolerant telecommunication service system with N redundant modules,
where the system is available as long as at least K modules are available. Each
module comprises two components and can be either in failed, stand-by or ac-
tive mode. Reconfiguring the system after a failure takes some time during which
the system is not available. All failure-, repair- and reconfiguration-rates can be
different. Considering a “4 out of 6” and “6 out of 8” configuration, where in
case of the latter the obtained MRM already consist of more than 2.61 × 108

system states, we illustrate, that our tool chain is capable of computing the rel-
evant measures of interest without problems, where standard techniques, such
as included in the tool DSPNexpress, are less efficient or even fail.

Future Work: Since we develop our implementations in the context of Möbius,
we are currently implementing an efficient symbolic realization of the “Replicate”
feature [SM91], so that modeled symmetries lead to much smaller Markov reward
models to be solved. Furthermore, an adaptation of aggregation methods for the
approximate solution of CTMCs to the case of ZDD-represented MRMs seems
to be a promising starting point for future research.

References

[ADD97] Formal Methods in System Design: Special Issue on Multi-terminal Binary
Decision Diagrams, Volume 10, No. 2-3, April - May 1997.

[BB03] M. Bouissou and J. L. Bon. A new formalism that combines advantages
of fault-trees and Markov models: Boolean logic driven Markov processes.
Reliability Engineering and System Safety, pages 149–163, November 2003.

[Bry86] R.E. Bryant. Graph-based Algorithms for Boolean Function Manipula-
tion. IEEE ToC, C-35(8):677–691, August 1986.

[CJMS03] G. Ciardo, R.L. Jones, A.S. Miner, and R. Siminiceanu. Logical and
stochastic modeling with SMART. In Proceedings of Tools 2003, pages
78 – 97. Springer, LNCS 2794, 2003.

[DCC+02] D. Deavours, G. Clark, T. Courtney, D. Daly, S. Derisavi, J. Doyle, W.H.
Sanders, and P. Webster. The Moebius Framework and Its Implementa-
tion. IEEE Transactions on Software Engineering, 28(10):956–969, 2002.

[DSC00] J.B. Dugan, K.J. Sullivan, and D. Coppit. Developing a low-cost high-
quality software tool for dynamic fault-tree analysis. IEEE Transaction
on Reliability, 49(1):49–59, March 2000.

[GLW00] G. Graf, M. Leberecht, and M. Walter. High Availability Commodity
Computing - A CompactPCI-System Evaluation. In Proceedings of the In-
ternational Conference on Parallel and Distributed Processing Techniques
and Applications, volume 4. CSREA Press, 2000.

50 K. Lampka, M. Siegle, and M. Walter

[KNP05] M. Kwiatkowska, G. Norman, and D. Parker. Quantitative analysis with
the probabilistic model checker PRISM. Electronic Notes in Theoretical
Computer Science, 153(2):5–31, 2005.

[Lin98] C. Lindemann. Performance Modelling with Deterministic and Stochastic
Petri Nets. Wiley and Sons, 1998.

[LS06a] K. Lampka and M. Siegle. Activity-Local Symbolic State Graph Genera-
tion for High-Level Stochastic Models. In Proc. of MMB Conference 2006,
pages 245–264, 2006.

[LS06b] K. Lampka and M. Siegle. Analysis of Markov Reward Models using Zero-
suppressed Multi-terminal Binary Decision Diagrams, 2006. To appear in
Int. Conf. Valuetools 2006.

[Min93] S. Minato. Zero-Suppressed BDDs for Set Manipulation in Combinatorial
Problems. In Proc. of DAC, pages 272–277, Dallas (Texas), USA, June
1993. ACM Press.

[MPB03] I. Majzik, A. Pataricza, and A. Bondavalli. Stochastic Dependability
Analysis of System Architecture Based on UML Models. Lecture Notes in
Computer Science, 2677:219–244, 2003.

[Par02] D. Parker. Implementation of Symbolic Model Checking for Probabilistic
Systems. PhD thesis, University of Birmingham, 2002.

[SM91] W. H. Sanders and J. F. Meyer. A unified Approach for specifying Mea-
sures of Performance, Dependability, and Performability. In Dependable
Computing for Critical Applications, Vol. 4, pages 215–237. Springer-
Verlag, 1991.

[Som] F. Somenzi. CUDD Package, Release 2.4.x. http://vlsi.colorado.edu/˜fabio.
[STP96] R.A. Sahner, K.S. Trivedi, and A. Puliafito. Performance and Reliability

Analysis of Computer Systems. Kluwer Academic Publishers, 1996.
[THMH98] D. Tang, M. Hecht, J. Miller, and J. Handal. MEADEP: A dependability

evaluation tool for engineers. IEEE Transaction on Reliability, 47(4):443–
450, 12 1998.

[WS05] M. Walter and W. Schneeweiss. The modeling world of Reliability/Safety
Engineering. LiLoLe Verlag, 2005.

[WT04] M. Walter and C. Trinitis. How to Integrate Inter-Component Dependen-
cies into Combinatorial Availability Models. In Proc. Ann. Reliability and
Maintainability Symp. (RAMS 2004), Los Angeles, USA, pages 226–231.
IEEE, 2004.

[WT05] M. Walter and C. Trinitis. OpenSESAME: Simple but Extensive Struc-
tured Availability Modeling Environment. In Proc. 2nd International
Conference on the Quantitative Evaluation of Systems (QEST) 2005.
IEEE Computer Society Press, 2005.

“To Store or Not To Store” Reloaded:
Reclaiming Memory on Demand

Moritz Hammer1 and Michael Weber2,�

1 Ludwig-Maximilians-Universität München, Institut für Informatik
hammer@pst.ifi.lmu.de

2 CWI, Dept. of Software Engineering, Amsterdam, The Netherlands
Michael.Weber@cwi.nl

Abstract. Behrmann et al. posed the question whether “To Store or
Not To Store” [1] states during reachability analysis, in order to counter
the effects of the well-known state space explosion problem in explicit-
state model checking. Their answer was to store not all but only some
strategical states. They pay in run-time if the answer too often is “Not
To Store”. We propose a different strategy to adaptively trade time for
space: “To Store” as many states as memory limits permit. If free memory
becomes scarce, we gradually swap states out to secondary storage. We
are careful to minimize revisits, and I/O overhead, and also stay sound,
i.e. on termination it is guaranteed that the full state space has been
explored. It is also available for counterexample reconstruction. In our
experiments we tackled state spaces of industrial-scale models with more
than 109 explicit states with still modest storage requirements.

1 Introduction

Model checking of industrial-scale models is usually restricted by memory size.
The research addressing this issue can be divided into two groups: Automatically
making models smaller by abstraction, and getting more out of the memory
available. While the former direction has seen significant improvements with the
advent of CEGAR model checking [2], large-scale model checking still remains
an important area of research.

In explicit-state model checking, memory size is mostly restricted by the hash
table used to detect state revisits. Among the many solutions to this problem,
disk-based model checking and lossy hash tables have been proposed. Disk-based
model checking basically tries to maintain a bigger hash table by swapping states
to disk. As disk space is much cheaper than RAM, larger state spaces can be
checked on normal systems. Disk storage is of course much slower, especially in
random-access mode, which establishes the need for adapted algorithms.
� This research has been partially funded by the Netherlands Organisation for Scien-

tific Research (NWO) under FOCUS/BRICKS grant number 642.000.05N09.

L. Brim et al. (Eds.): FMICS and PDMC 2006, LNCS 4346, pp. 51–66, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

52 M. Hammer and M. Weber

Lossy hashing makes use of the observation that the hash table is used for
avoiding revisits of parts of the state space that have been visited before. While
revisiting is costly with respect to runtime, it does not void the correctness of
the search result, as long as the hash table is sufficient to ensure termination.
Therefore, it can be attempted to remove states from the lossy hash table in order
to reclaim their memory and make room for further, hopefully newly discovered
states. Behrmann et al. [1] claim that only 10% of the state space might need
to be stored, allowing for much larger search spaces; however this will lead to
extensive revisits in our experience.

Both directions have been given much research, but they have not yet been
combined. Disk-based model checking usually does not make attempts to check a
model in RAM only, should it turn out to be small enough. Lossy hashing, on the
other hand, does not attempt to avoid revisits. By combining both strategies, we
obtain an algorithm that avoids extensive revisits by performing disk lookups,
but runs in RAM only as long as this is sufficient. This leads to a smoothly
degrading algorithm, which adaptively changes its use of memory: For smaller
models, it is little different from a RAM-only model checker, and it gradually
becomes a disk-based model checker if memory becomes scarce.

Contributions. We present an external-memory algorithm for explicit-state
space generation. We make novel use of a combination of well-known data struc-
tures like lossy hash tables and Bloom filters [3] to reduce expensive disk input
and output (I/O). For each generated state, we obtain a three-valued answer:
whether a state has surely been seen before, whether it has not been seen so far,
or whether the answers requires a costly lookup on disk. Naturally, we aim to
keep the number of states in the last class as low as possible to make our method
feasible in the presence of high disk latency for random access.

Previous uses of the aforementioned data structures lead to reachable states
not being visited, thus rendering the results unreliable. In contrast, a design goal
of our algorithm was to ensure that the whole reachable state space is visited,
thus enabling its post-processing.

Our experiments show that we can easily handle state spaces of more than
109 states. A distinguishing feature of our algorithm is that it performs well if
entire state vectors of all states are stored on disk, i.e. we do not apply lossy
compression. The stored states can be used in off-line analysis, and graph mini-
mization with existing tools [4,5].

Overview. In Section 2 and 3, we discuss the ingredients of our algorithm:
Lossy hashing and Bloom filter. In Section 4 we describe how they are combined,
and how disk storage is used to resolve the states that cannot be resolved with
this two in-memory data structures. Section 5 describes some optimizations that
can be done in order to speed up the disk lookups. Section 6 shows results we
obtained from a prototype implementation of our algorithm. We finish with a
discussion of related work in Section 7, and conclude with a view on further
steps in Section 8.

“To Store or Not To Store” Reloaded 53

2 Safe Lossy Hashing

In an explicit-state model checker, the hash table containing the closed set, i. e.
the set of states already visited, is the most memory-demanding component. In
fact, in the SPIN model checker [6], it is the only component to allocate memory
once the search has been started. As such, it becomes the limiting factor for
model size, and various ways of extending it have been proposed: using under-
and over-approximations of the visited set, or making it larger by swapping states
to disk.

In our approach, we maintain a chained hash table in memory. But once the
table fills up, we choose states that are less likely to be visited again according
to some strategy, and swap them to disk, thus freeing the memory they (and the
hash table buckets that contain them) claim. The hash table then still serves
as an under-approximation of the closed set, i.e. any state that is found to be
stored in the hash table is known to have been visited previously, but a miss will
have to be checked against disk.

For storing states on a disk a data structure supporting random access may
seem the best choice. However, due to the large number of requests and the
unpredictable distribution of states, this structures (like a hash table on disk)
tend to become prohibitively slow due to disk latency times: As a lookup of any
given state is likely to require the reloading of a new block on disk, each state
lookup is paid for by the disk’s latency time. We thus take the approach taken
by most disk-based model checking tools in some way or other: We group our
read and write accesses, so that entire pages of states can be read and written
at once. For writing states, this is easily achieved by collecting states in an in-
memory staging area prior to writing them to disk. For reading states, we need
to collect states that have been found to be possibly unvisited in a candidate set,
which will eventually be checked against disk at once. This technique is known
as delayed duplicate detection (DDD), as for a conflicting state, resolution is
postponed until it may be conducted efficiently.

2.1 Selecting Victim States to Swap Out

Once the lossy hash table takes up all memory, each addition of a freshly discov-
ered state needs to be accounted for by the removal of a state in the hash table.
For reasons of efficiency, we cannot evaluate all states each time this occurs, but
rather select a set of states (with arbitrary size, we used 10% of the total states
in the hash table) at once and use states from this set for reclamation of memory.
This can be done by assigning to each state a value that indicates how likely we
estimate a revisit to be, and calculate the k-median; all elements lesser than the
k-median can be scheduled for reclamation. This can be done in O(n log n) by
sorting and selecting, or by an O(n) expected time adaption of quicksort.

There are several candidates for evaluating functions. Behrmann et al. [1]
provide some which include a static analysis of the model. We try to avoid
a static analysis to remain independent of the state space generator. Also, the

54 M. Hammer and M. Weber

Table 1. Comparison of cache failures with different reclaiming strategies. Column
“LHT size” indicates the size of the lossy hash table with respect to the total state
space size.

Cache Failures for Reclaiming Strategy
LHT size Random Incoming Outgoing Age Combination
Dining Philosophers (n = 9): 4,685,071 states, 12,234,622 transitions

2% 7, 569, 757 7, 799, 983 7, 965, 160 7, 657, 372 7, 702, 798
25% 3, 282, 324 4, 913, 862 4, 366, 858 3, 251, 002 5, 143, 714
80% 178, 254 429, 148 403, 077 9, 481 9, 481

Lunar scenario 4(b): 3,335,917 states, 3,923,209 transitions
2% 225, 960 233, 010 259, 499 228, 485 194, 332

25% 70, 126 62, 733 97, 652 59, 272 43, 221
80% 8, 124 4, 861 13, 249 64 4

purpose of our heuristic differs: While they try to detect states that cut off large
subgraphs and avoid revisits to them, we try to measure the likelihood of a direct
revisit of a state to avoid the cost of the disk lookup.

Among the candidates for heuristic functions are:

– No evaluation at all – purely random replacement. This can be done by
just reclaiming the state that happens to collide with the new state in the
hash table.

– Incoming edges – we maintain a counter for each state in the hash table
that counts how often it was revisited. It is hoped that a state that has
already been visited several times will be visited further times again.

– Outgoing edges – contrary to the incoming edges, the number of outgoing
edges is readily available for fresh states. Both the incoming and outgoing
edge criteria hope that a hub state effect is experienced: that there are states
that lie on many paths, while most other states lie on few paths only.

– Age – due to transition locality often exhibited by models of communication
protocols, a new state is more likely to be revisited than is an old state. This
assumption is already used in the general layout of our algorithm: Freshly
discovered states are added to the lossy hash table, without considering any
heuristics on their revisit likelihood.

– A combination of said functions, e. g., keeping new states and states that
have many outgoing edges.

Table 1 shows the efficiency of different reclaiming strategies for a Dining
Philosophers model with 9 philosophers, and a model of Lunar routing protocol
scenario 4(b) [7]. The “LHT size” column indicates the size of the lossy hash table
with respect to the total state space size. Both, age and the combined measure
(evaluating incoming, outgoing and age values evenly) perform well, but neither
can produce a significant improvement over the other. With sufficiently small
lossy hash tables, any strategy effectively degrades into random replacement.

“To Store or Not To Store” Reloaded 55

2.2 Single-Successor States

Apart from reclaiming memory, we can take another measure towards keeping
memory requirements of the hash table tractable: We may choose only to store
states that have more than one successor. While states with one outgoing transi-
tion may be target of multiple incoming transitions, the cost of revisiting them is
limited: the previously visited chain of single-successor states is followed again,
until a state with multiple successors is found and the revisit is detected. This
optimization is used for example in the SPIN model checker [6]. It is very easy
to implement and independent of the state space generator as it does not need
to take the actual semantics of the state vector into consideration.

Behrmann et al. [1] also mention it as one of their strategies to decide which
states not to store. They solve the problem of cycles consisting solely of chained
states leading to non-termination by ensuring that every kth state is stored
unconditionally. They recommend setting k to a high value.

Contrary to them, we did encounter such cycles in our experiments (e. g.,
GIOP1 protocol [8], or the Leader Election protocol from SPIN). With a dif-
ferent strategy, we avoid spinning in loops with small diameter (due to k). On
encountering a single successor state, we perform a local (degenerated) depth-
bounded reachability search from that state. It continues until either a cycle is
found (which then can serve as input for further analyses), or by finding a state
with more than one outgoing transition. In the latter case the search stops as
well, and all states found during its run are thrown away, except for the last one.
The same is done if the search hits a memory limit, in order to avoid problems
with extremely large chains. However, in practice we observed only short chains
of less than 100 states.

We found that the single-successor optimization in some cases vastly reduces
the number of states that need to be stored, yet it comes not always for free:
in our experiments we sometimes witnessed a high number of revisits, resulting
from chains of states with in-degree greater than one. Combining this tech-
nique with a static loop coverage analysis as proposed by Behrmann et al. [1]
would be beneficial, however this is out of scope for this work, as we focus on
methods independent of the modeling formalism. Note that even if states are
revisited, they are not stored to disk a second time, nor do they produce ad-
ditional disk lookups. If the state space generator is fast enough, the cost of
calculating revisited states is easily outmatched by the decreased cost in storing
these states.

The single-successor optimization is very effective on models exhibiting a high
degree of determinism, that is, in many states exactly one transition can be
executed. Models created by experts are often in this class [9], however this is also
dependent on the modeling problem at hand. Means to manually make models
more deterministic are language constructs like atomic regions and mutexes.

It is worth noting that such mostly deterministic models often do not ben-
efit much from partial order reduction techniques, an otherwise very effective
technique for state space reduction.

56 M. Hammer and M. Weber

3 Bloom-Filter Cache

Lossy hashing enables us to reclaim memory, in case the state space becomes too
large to be kept in memory. Using disk lookups will prevent us from repeatedly
searching parts of the state space. However, once states have been removed from
the in-memory hash table, we can no longer predict whether a state that was
not found in the hash table has indeed not been visited yet, or has been swapped
to disk. A query to the lossy hashing will be answered with either “visited” or
“don’t know”, and the “don’t know” answers need to be checked againstdisk.

Since this procedure entails a disk lookup for each unvisited state, it is quite
costly. An inexpensive way of reducing the number of lookups for new states
is offered by Bloom filters [3]. Basically, a Bloom filter is a set representation
consisting of an array of m bits and k hash functions f1, . . . , fk. To add an
element e, the bits (f1(e) mod m), . . . , (fk(e) mod m) are set. For k = 1 or
k = 2, this is the same as the bit-state hashing method employed in SPIN [10],
but if the state space can be guessed to be roughly of size n, a Bloom filter’s k
parameter can be optimized for the ratio m/n, producing superior results [11].

While coverage of Bloom filters is notably good, the filter maintains an over-
approximation of the set of visited states. If we were to rely purely on the Bloom
filter, hash collisions might prevent some parts of the state space to be visited.
Dual to the lossy hashing, a miss in the Bloom filter will be sufficient to know
that a state is unvisited yet, whereas a hit will not always be reliable, as it can
be a false positive. Thus, our Bloom filter will answer with either “unvisited” or
“don’t know”.

It should be noted that, when choosing the right number of hash functions,
collisions are exceedingly rare with Bloom filters. For example, only 9 collisions
are encountered when checking a model with ≈ 800,000 states, using a Bloom
filter with 50 Mbits and four hash functions).

Using a Bloom filter is quite cheap: a small portion of memory will provide
good coverage, and at least one of the hash functions utilized is required for the
lossy hash table lookup anyway (Dillinger and Manolios discuss how to maximize
hash function reuse [11]). Together with a lossy hash table, we obtain a cache
that gives a three-valued answer on whether a state was visited: either “visited”
due to a hit in the lossy hashing, “unvisited” due to a miss in the Bloom filter,
or “don’t know” if both filters fail to give a definitive answer. The cost of this
combined filter is little more than the lossy hashing alone. We need, however,
memory to organize the states which are subject to DDD.

Fig. 1 shows the complete algorithm in pseudo-code. While the order in which
the Bloom filter and the lossy hashing are queried is arbitrary with respect to
the correctness of the algorithm, it is more efficient to precede the lossy hash-
ing check by the Bloom filter check, which is cheaper and may make a check of
the lossy hashing (which sometimes involves the processing of a chain of hash
buckets and comparing the state vectors) obsolete. The algorithm may further
be refined by storing whether a state was reclaimed from the lossy hashing yet,

“To Store or Not To Store” Reloaded 57

open ← {initialState}
candidate ← ∅
disk ← ∅
while (true) do

if open = ∅ then diskLookup() fi
State s ← open.removeState();
for s′ ∈ succ(s) do

if (bloom.isUnvisited(s′))
then addToOpen(s′)
else if ¬lossy .isVisited(s′)

then candidate ←
candidate ∪ {s′}

fi
fi

od
od

proc addToOpen(State s) ≡
open ← open ∪ {s}

bloom.add(s)
if lossy .isFull()

then State s′ ← lossy .reclaim()
disk ← disk ∪ {s′}

fi
lossy .add(s)

.
proc diskLookup() ≡

for s ∈ disk do
if s ∈ candidate

then candidate ← candidate \ {s}
fi

od
if candidate = ∅ then terminateSearch() fi
for s ∈ candidate do

addToOpen(s)
od

.

Fig. 1. Pseudo-code for the Reclaim algorithm

for as long as this has not been done, the visited status of any state may be
decided solely by the lossy hashing.

4 Implementation

We have implemented the proposed algorithm as a part of a model checker named
cmc1. cmc, for “Component-basedModel Checker”, has been developed as a show-
case for component technology. Using different components (like lossy hashing,
Bloom filter etc.) proved effective for testing new ways of handling states.

4.1 The Life-Cycle of States

In cmc, states are passed between components as indicated in Fig. 2. We main-
tain different sets of states:

– the open set consists of all states that have been constructed, found to be
unvisited but not yet processed,

– the candidate set is a set of states that need to be checked against the disk
to verify that they have not yet been visited,

– the reclaim set is a set of states that are stored in the lossy hashing, but
have been scheduled for writeout to disk in order to free memory.

New states are constructed as either the initial state or successor states to
a state taken from the open set. These states are passed to the main search
1 http://www.pst.informatik.uni-muenchen.de/∼hammer/cmc/

http://www.pst.informatik.uni-muenchen.de/~hammer/cmc/

58 M. Hammer and M. Weber

algorithm (➀). The main search then queries the caches (➁) and obtains a three-
valued answer: either the state is not visited, in which case it is added to the
open set, or it has been visited already, in which case it is discarded, or we cannot
obtain a definitive answer from the caches, in which case we add the state to the
candidate set (➂). Any state that enters the open set is immediately added to
the caches (➃). This ensures that no duplicates ever enter the open set.

By adding new states to the caches, the lossy hashing finally runs full, and a
reclaim set is chosen. This set is written to disk (➄) and states from the set are
removed if room is needed for new states sent from the open set. Writing states
to disk is done in pages, which can be compressed by Zlib (Section 5.3).

State
Generator

Search

Open set

Bloom
filter

Lossy

hashset

Disk
store

Disk
query

Zlib

➀

➁

➂

➃

➄

➅

➆

➇

Fig. 2. Life-cycle of states; arrows depict
the data-flow of states

Once the open set becomes empty,
or the candidate set becomes too large,
a disk lookup is triggered. We use the
seemingly inferior technique of check-
ing the complete set of states written
to disk in a linear fashion, comparing
each state against an index built from
the candidate set. Unvisited states are
added to the open set, while visited
states are discarded (➅). It is imper-
ative to maintain the invariant of hav-
ing no duplicates within the open set.
This is easily achieved by removing du-
plicates when building the index.

In order to maintain a definitive up-
per bound on memory consumption,
we still need to avoid uncontrolled
memory usage by the open set. Since
each state enters the open set only
once, this is easy to do by dumping
parts of it to disk, should it become
too large, and reloading them if the in-
memory open set becomes empty (➆).

Finally, states are taken from the
open set by the search algorithm to
have their successors computed (➇).

5 Speedups Through I/O Reduction

5.1 Partitioning the Closed Set

As described above, disk lookups are done by comparing the candidate set with
every state on the disk. While this seems extremely expensive, it proved to be
superior to building hash-tables that operate on disk, as usual disk-page caching
fails due to the unpredictable position of states within the hash table (and thus
on disk).

“To Store or Not To Store” Reloaded 59

Table 2. A comparison of I/O effort for different forms of state storage for the pftp
protocol. “Preparation” describes the part of the algorithm that processes data that
is written to or read from disk; for hash compaction, this consists of calculating hash
values for the state, whereas for the Zlib-using algorithm, this contains de- and inflating
disk pages.

Pages Runtime Relative time for
Method

written read [min.] I/O Preparation
pftp: queue size = 11, 12.9M states stored
Hash compaction, 5 byte 896 6872 9:21 7.89% 2.13%
Hash compaction, 8 byte 1472 11285 9:48 12.36% 2.02%
Zlib 2880 23205 14:03 4.13% 22.27%
Plain disk 56816 438896 47:12 74.84% −

By using disk partitions, the cost of looking up a single state may be cut, but
this only takes effect at the very end of the run, when a few remaining states
need to be checked against the disk. We use n disk partitions (with n being
rather small, i.e., 32 ≤ n ≤ 128) and a hash function to assign each state to
one of them. In our experience, this leads to a very even distribution of states,
so that each partition accounts for an n-th of the total set of stored states. The
cost of a single-state lookup is then divided by n. However, this does not help
for bulk lookups. Due to the even distribution of states by hashing, a lookup
with more than n states is likely to require all partitions, and in our setting, a
normal lookup contains a few million states.

A lookup is conducted by first building a hash set of candidate states, elim-
inating duplicates within the candidate set in the process. Then, we load each
page into memory at full linear-read disk speed, and compare each state against
that hash set. If the state from disk is found in the hash set, it is removed from
the hash set. After all pages have been processed, the states remaining in the
hash set are added to the open set: they have been found to be unvisited. This
is in essence done like in Stern and Dill’s CheckTable function [12].

5.2 Hash Compaction

Of course, the above scheme involves reading rather many pages from disk, and
reducing I/O traffic becomes of importance. The disk-based Murϕ implementa-
tions achieve this by employing hash compaction, i.e. not store the state itself,
but a hash code (sized 40 bit in case of Hopper [13]). As state vectors encoun-
tered with large models easily exceed 500 bytes, only a hundredth of I/O traffic
is produced, at the cost of possibly under-approximating the search space due to
collisions and losing state information for those states that are written to disk.
We take a different, albeit less efficient approach in terms of I/O traffic: lossless
compression of disk pages. The I/O overhead produced by the three approaches
is given in Tab. 2. For hash compaction, we employ the SHA1 cryptographic
hash function [14].

60 M. Hammer and M. Weber

Table 3. Model statistics for smaller models

Non- 1-succ. Zlib Avg. state State
Model States 1-Succ. Edges revisits compr. size [byte] zeroes

Hugo: Hot Fail† 4.5M 3.8M 8.5M 5.1M 3.20% 756.6 68%
Peterson, n = 5 68.9M 68.9M 378.9M 0.0M 9.06% 148.5 72%
pftp, qsize=11 14.3M 12.9M 38.7M 5.8M 4.15% 298.0 56%
Lunar, 4(b) 3.3M 0.7M 3.9M 0.9M 5.04% 595.5 42%
Dining Phil., n = 9 4.6M 4.5M 12.2M 3.2M 9.95% 95.0 51%
Leader, n = 11 8.2M 8.2M 58.4M 0.0M 2.42% 788.0 70%
† This is a scaled-down model. For the full model, see Table 4

5.3 Compression

Disk lookups are largely dominated by disk I/O time. Thus it seems sensible to
trade CPU time to reduce the disk I/O time, and we can do so by compressing
the states.

Compressing states by either using entropy encoding or state collapsing meth-
ods has been investigated in model checking for quite some time. State collapsing
maintains a table of process states, from which a state is assembled, and this
table cannot be set a definitive memory bound (without further effort). Huffman
coding offers a two to three-fold compression.

We can, however, take advantage of the bulk character of our disk I/O oper-
ations: We use paging to write sets of states to disk, and also read sets of states
during disk lookups. The size of such sets can be chosen arbitrarily, and they are
a good target for dictionary-based compression, as used by the Lempel-Ziv LZ77
algorithm [15], which in turn is used in the DEFLATE algorithm as implemented
by Zlib [16].

Using Zlib brings vast improvements: A compression to 5% of the original
state size can be achieved on most of our models (Tab. 3, where a compression
level of 8 was used), which not only decreases disk lookup times, but also allows
to check for state spaces twenty times as large with the same disk space. In
our experiments, the overhead of running the Zlib on the state sets was easily
outmatched by the lower time spent on I/O operations.

The benefit of using the Zlib can be explained from two facts: Our encoding
of states produces many zeroes, e.g., rarely changed most significant bits of
variables (Tab. 3, last column). Secondly, successive states tend to differ only in
a small number of places. Therefore, they are ideal input for any compressor, and
since we consider sets of states at once, are even more suitable for dictionary-
based compression.

Hash compaction can achieve even higher compression rates; compression is
approximately five times higher than with the Zlib. This is paid for by losing
state information and risking collisions. Using 40 bits we found collisions in state
spaces with as little as 15M states.2

2 We use ‘M’ and ‘G’ as abbreviations for multipliers Mega (106) and Giga (109),
respectively.

“To Store or Not To Store” Reloaded 61

Our algorithm offers the guarantee to be exact (optionally allowing for revisits
of states due to the single-successor pruning) and also maintains each visited
state in a form that can be used to extract the original space, should anyone
have need to investigate it.

6 Results

We tested our approach with different kinds of models: standard (parametric)
models distributed with SPIN, as well as hand-written and generated Promela
models. In the latter two categories are some of the largest case studies (state
space-wise) we could find.

For state space generation the NIPS Virtual Machine (VM) [17] is used, and
an accompanying Promela compiler to translate our models into byte-code suit-
able for execution. Our measurements are done without partial-order reduction,
but a version of statement merging.

All experiments were carried out on a 64 bit AMD OpteronTM 248 Dual
Processor machine with 16 GB RAM and a single 200 GB Serial-ATA hard-disk,
running Linux 2.6.4. Only one of the processors is used by cmc.

Effectiveness of Caches. The effectiveness of the caches directly influences the
number of states that need to be checked against disk. We measured the number
of cache failures, i.e. the number of states that need to be checked against disk, for
two different models: the Lunar scenario 4(b) [7], which is rather deterministic,
i. e. it contains 3.3M states and 3.9M transitions, and the Dining Philosophers
model for n = 9 processes, which has 4.6M states but 12.2M transitions and
thus is much more nondeterministic.

The resulting number of cache misses is shown in Fig. 3. For the Dining
Philosophers, the lossy hashing cache is more important than for the much more
deterministic Lunar protocol. Caches misses dominate the runtime for large
models, since they need to be processed on disk.

 0
 5e+06

 1e+07
 1.5e+07

 0

 500000

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06
Cache failures

Bloomfilter bitsLossy hashing elements

(a) Lunar, scenario 4(b)

 0
 5e+06

 1e+07
 1.5e+07

 0
 1e+06

 2e+06
 3e+06

 4e+06

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07
Cache failures

Bloomfilter bitsLossy hashing elements

(b) Dining Philosophers, n = 9

Fig. 3. Effectiveness of caches with different parameters. Line intersections represent
actual measurements. Lower is better, as cache failures result in disk lookups.

62 M. Hammer and M. Weber

 0

 2

 4

 6

 8

 10

 12

 0 2e+07 4e+07 6e+07 8e+07 1e+08 1.2e+08

S
ta

te
s/

m
s

Runtime in ms

Lunar, scenario 4(d), 1.3G states, 2.5GB memory

Sample: every 1M states
Sample: every 20M states

Fig. 4. Smooth degradation illustrated by the states/millisecond development

Smooth Degradation. An advantage of our algorithm is its ability to degrade
smoothly, i. e. run without much overhead as long as memory is sufficient and
start trading time for memory afterwards. Fig. 4 shows the development of a
model checking run for the Lunar 4(d) example, which consists of 1.3G states
(including some revisits), of which 248M are non-single-successors. RAM con-
sumption was restricted to 2.5 GB, with 256 MB given to the Bloom filter, 1 GB
given to lossy hashing, and the remainder used up for open and candidate sets,
as well as I/O buffers, Zlib buffer and some smaller data structures. 8.0 GB got
written to disk (compressed by Zlib; the raw data amounts to 153.0 GB). Total
runtime is approx. 35.5 hours. For the first 90 seconds, memory was sufficient and
allowed for 11 states per millisecond (taken from the open set and processed).
Afterwards, the disk had to be used. The bulk operations of reading and writing
states do not distribute evenly into short measurement intervals, which explains
the peaks, but with a sample interval chosen large enough a clear trend can be
identified. The converging behavior can be explained from three effects: First,
caches are degrading and resolve less requests, second, as the model is explored
exhaustively, revisits become more likely, and third, disk lookups become more
expensive.

Large Runs. Tab. 4 shows the results of some large models. For the first and
third model, a limit of 2.5 GB RAM was set, whereas the other models were given
16 GB RAM. We always use the Linux O DIRECT flag for files opened on disk
to disable operation system caches. Otherwise, spare memory would be used for
caching disk I/O, thus leading to artificially better results, which break down if
memory is indeed maxed out. The two Lunar scenarios exceeded the capabilities
of SPIN with 4 GB RAM and both partial-order reduction and COLLAPSE

“To Store or Not To Store” Reloaded 63

Table 4. Runs for large models. States visited are all states, including single-successor
states, whereas states stored are only states with more than one successor.

States Time Zlib Uncompr. Bloom Cache
Model visited stored Edges [h] compr. stored failures

GIOP1 192.9M 162.5M 664.6M 13:34:21 4.81% 79.2GB 363.3K 91.2M
Hugo: Hot fail 555.6M 205.3M 864.9M 15:18:16 3.79% 166.9GB 127.9K 32.1M
Lunar 4(d) 1.3G 248.3M 1.9G 35:37:29 5.27% 153.0GB 1.7M 150.8M
Lunar 4(f) 1.6G 334.6M 2.6G 38:36:02 5.73% 230.0GB 12.7M 387.0M

enabled [7]. The GIOP1 protocol [18] has been reported as only checkable with
bit-state hashing (although this has been checked on a machine with much less
memory than we use). The hot fail-over protocol has been implemented as an
example in Hugo [19] and also fails to check in SPIN (for a queue size of 6,
which is required; the smaller model in Tab. 3 does not satisfy certain liveness
properties).

For all four models, the single-successor criterion works quite well, as can be
seen by comparing the number of states actually stored to the number of states
visited, which is the sum of the former number and those states discarded due to
the single-successor criterion. The visited states number is an over-approximation
of the actual number of states in the state space, as is the number of edges, but we
still need to store only a fraction of states. Also, Zlib compression performs very
well. We consider both properties to be specific for industrial protocols, which
are not too nondeterministic (comparing the number of edges to the number of
states covered) and rely on rather large state vectors (more than 500 bytes for
all models, with 895 bytes for the hot fail-over protocol).

It should be noted that due to the modularization of our model checker, run-
times are not very optimized and provide a rough outline only. We are confident
that they can be significantly improved. The runs support our claim that we can
trade runtime for memory, e. g. for the Lunar scenario 4(d), we require approx-
imately 15 hours with 16 GB of RAM provided, but are also able to finish a run
with 2.5 GB in less than 36 hours.

Furthermore, none of our runs came even close to completely using the 200 GB
disk we had at our disposal (Lunar scenario 4(f) required just slightly more than
13 GB). Since RAM consumption stays completely stagnant after the first disk
lookup have been triggered, up to ten times larger models can be checked, given
enough patience on behalf of the researcher. However, for very large models, our
algorithm can be expected to degrade until a dedicated disk-based model checker
will be the better choice.

7 Related Work

In this section we review some of the related work on disk-based (explicit) state
exploration.

64 M. Hammer and M. Weber

Bao and Jones [13] analyze existing disk-based algorithms. They consider
Mono proposed by Stern and Dill [12] and Local by Della Penna et al. [20],
and propose their own disk-based algorithm, Part, for state space exploration.

All three algorithms have in common that they can explore larger state spaces
than can be handled with purely memory-based algorithms. Parts of the state
space is stored on harddisk. In these algorithms several strategies are used to
reduce I/O, or to group it so that data can be read linearly from disk, as this
can be done much more efficient.

The Mono algorithms uses disk regardless whether enough memory for the
full state space is available. At least once per breadth-first level, all states stored
in memory are compared for duplicates on disk, and removed if they are. Remain-
ing states have not been visited before, and thus are moved to the breadth-first
open set. They are also written to disk unconditionally. An overflow situation due
to excessively growing open set, which we have witnessed in dense models (our
run of Lunar scenario 4(f) had a temporary open set size exceeding 5.8 GB),
is not taken care of.

The Local algorithm is a modification of Mono. It does not always compare
against all states on disk, but only the most recently stored. Only occasionally,
older states are compared against. The scheme works because state spaces of
protocol models exhibit transition locality [20]. It allows large savings in I/O
operations, however states may be revisited and also stored multiple times on
disk.

The Part algorithm tries to reduce delayed duplicate detection time even at
the expense of increased disk I/O time. Overall run-time is significantly reduced.
It simulates parallel state exploration [21] on a single processor by partitioning
the open list and hashtable and into several pieces, with only one active at a
time (multitasking without multiprocessing). Thus, not all states on disk need to
be checked during DDD, but only a fraction. Due to the partitioning of hashta-
bles, either the number of partitions must be guessed upfront to accomodate
all reachable states, or a potentially costly scheme for growing the hashtable
must be devised. In this algorithm the open lists are not sets, states can enter
them several times, leading to significant overhead, both in time and memory,
in particular for models with high locality.

All three algorithms use hash compaction for their largest tests, to reduce
I/O bandwidth requirements manifold: instead of full state vectors only a short
hashcode (40–48 bit) is stored. However, without having states vectors available
to resolve hash collisions, this leads to reachable states accidentally being left
unexplored.

Edelkamp et al. [22] accelerate their External A∗ algorithm with bitstate hash-
ing, yielding a partial search algorithm. The A∗ algorithm is targeted towards
finding a goal state with heuristics. We see its main use in the early develop-
ment process when checked properties are frequently not satisfied. If a goal state
cannot be found the algorithm would degrade into an exhaustive search. The
modification making it a partial search is not helpful in that case.

“To Store or Not To Store” Reloaded 65

Behrmann et al. [1] chose a different way to tackle state spaces which do not
completely fit into memory. Instead of storing states on disk, they investigated
different criteria which allow not to store states at all. The savings in space are
paid with increased run-time due to revisits, even if enough memory would be
available.

8 Conclusions

In this paper, we presented a novel algorithm for state space exploration using
external memory. It makes novel use of a combination of Bloom filters, lossy
hash tables and compression to reduce disk I/O, while still ensuring that all
reachable states are indeed explored. Additionally, states are stored to disk for
off-line post-processing. Our experiments confirm that our method is practical.
We can easily handle large case studies in the order of 109 states.

Future Work. Our implementation still uses some suboptimal algorithms which
penalizes checking on disk more than necessary. We would like to address these
in the near future, including an analysis of the I/O complexity of the updated
algorithms.

We have only addressed reachability problems which do not depend on depth-
first post-order. Two possible future lines of research suggest themselves at this
point. We would like to address how to combine these algorithms with checking
of arbitrary temporal formulas. We are confident that we can build on work done
for parallel and distributed model checking algorithms [23]. This also leads to the
next logical step, namely combining disk-based and distributed model checking,
allowing faster results, and possibly pushing towards the Tera-state (1012) scale.

References

1. Behrmann, G., Larsen, K.G., Pelánek, R.: To store or not to store. In Jr., W.A.H.,
Somenzi, F., eds.: CAV. Volume 2725 of Lecture Notes in Computer Science.,
Springer (2003) 433–445

2. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In Emerson, E.A., Sistla, A.P., eds.: CAV. Volume 1855 of
Lecture Notes in Computer Science., Springer (2000) 154–169

3. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun.
ACM 13(7) (1970) 422–426

4. Garavel, H., Lang, F., Mateescu, R.: An overview of CADP 2001. EASST Newslet-
ter 4 (2002) 13–24

5. Holmén, F., Leucker, M., Lindström, M.: UppDMC – a distributed model checker
for fragments of the μ-calculus. In Brim, L., Leucker, M., eds.: Proc. 3rd PDMC.
Volume 128(3) of ENTCS., Elsevier Science Publishers (2004)

6. Holzmann, G.J.: The SPIN model checker: primer and reference manual. Addison-
Wesley, Boston, MA 02116 (2003)

7. Wibling, O., Parrow, J., Pears, A.: Automatized verification of ad hoc routing pro-
tocols. In: FORTE. Volume 3235 of Lecture Notes in Computer Science., Springer
(2004) 343 – 358

66 M. Hammer and M. Weber

8. Kamel, M., Leue, S.: Formalization and validation of the General Inter-ORB Pro-
tocol (GIOP) using PROMELA and SPIN. STTT 2(4) (2000) 394–409

9. Pelánek, R.: Evaluation of on-the-fly state space reductions. In: Proc. of Math-
ematical and Engineering Methods in Computer Science (MEMICS’05). (2005)
121–127

10. Holzmann, G.J.: An analysis of bitstate hashing. Form. Methods Syst. Des. 13(3)
(1998) 289–307

11. Dillinger, P.C., Manolios, P.: Fast and accurate bitstate verification for SPIN. In:
SPIN. Volume 2989 of LNCS., Springer (2004)

12. Stern, U., Dill, D.L.: Using magnatic disk instead of main memory in the murphi
verifier. In: Computer Aided Verification. (1998) 172–183

13. Bao, T., Jones, M.: Time-efficient model checking with magnetic disk. In Halb-
wachs, N., Zuck, L.D., eds.: TACAS. Volume 3440 of Lecture Notes in Computer
Science., Springer (2005) 526–540

14. Eastlake, D.E., Jones, P.E.: US secure hash algorithm 1 (SHA1). Internet infor-
mational RFC 3174 (2001)

15. Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE
Transactions on Information Theory 23(3) (1977) 337–343

16. Gailly, J., Adler, M.: zlib data compression library. http://www.zlib.net/ (1995)
17. Weber, M., Schürmans, S.: NIPS virtual machine and compiler implementation.

http://www.cwi.nl/∼weber/nips/ (2005)
18. Kamel, M., Leue, S.: Formalization and validation of the general inter-orb protocol

(giop) using promela and spin. STTT 2(4) (2000) 394–409
19. Knapp, A., Merz, S.: Model Checking and Code Generation for UML State Ma-

chines and Collaborations. In: Proc. 5th Wsh. Tools for System Design and Veri-
fication, Technical Report 2002-11, Institut für Informatik, Universität Augsburg
(2002) 59–64

20. Penna, G.D., Intrigila, B., Tronci, E., Zilli, M.V.: Exploiting transition locality in
the disk based murphi verifier. In Springer-Verlag, ed.: Proc. of FMCAD. Volume
2517 of LNCS. (2002) 202–219

21. Stern, U., Dill, D.L.: Parallelizing the Murϕ verifier. In Grumberg, O.,
ed.: Computer-Aided Verification, 9th International Conference. Volume 1254 of
LNCS., Springer (1997) 256–267 Haifa, Israel, June 22-25.

22. Edelkamp, S., Jabbar, S.: Accelerating external search with bitstate hashing. In:
19. Workshop on New Results in Planning, Scheduling and Design. (2005)

23. Barnat, J., Brim, L., Černá, I., Šimeček, P.: DiVinE the distributed verification
environment. In Leucker, M., van de Pol, J., eds.: 4th International Workshop
on Parallel and Distributed Methods in verifiCation (PDMC’05), Lisbon, Portuga
(2005)

http://www.zlib.net/
http://www.cwi.nl/~weber/nips/

Discovering Symmetries�

Hassen Säıdi

Computer Science Laboratory
SRI International

Menlo Park, CA 94025, USA
Tel.: (+1) (650) 859-3810
Fax: (+1) (650) 859-2844
hassen.saidi@sri.com

Abstract. When analyzing concurrent software applications, symme-
try reduction techniques dramatically narrow the size of the state space
search by identifying computations that, because of symmetries in the
system, are redundant. While analysis algorithms exploiting symmetry
reduction are well developed, little has been done in discovering the na-
ture of the symmetries of a system. What is even less researched is dis-
covering symmetries that are particular to a temporal property. This pa-
per proposes a general framework for discovering symmetries in systems
that exhibit absolute or relative symmetries depending on the property of
interest. Our work extends previous symmetry reduction techniques by
making advances in automating generalized model automorphism discov-
ery. Generalized model automorphisms capture exact abstractions and
therefore preserve both the validity and the violation of any property of
the analyzed system while achieving dramatic state space reduction.

1 Introduction

For over half a century, formal verification has been used to help show that com-
puter systems will behave as they are intended to. The most popular verification
technique being used today is model checking, where, given a mathematical
model M of the computing system and a logical formula ϕ that expresses a
desired property of the system, the truth value of ϕ in M is determined by
exhaustive exploration of the state space of M . The state spaces of complex sys-
tems are many orders of magnitude larger than automated model checking tools
can handle. Therefore, the mathematical models of computing systems used in
model checking must be much simpler than the systems that are modeled. Yet,
the models must contain all the detail that is essential to the analysis being
performed, because omission of relevant detail can invalidate the results of the
analysis. The only obvious way of ensuring that analysis of these simple mod-
els will produce accurate results is to generate them by abstraction, the process

� This research was sponsored by NSF under contract number SA4102-10097PG/CCR-
0325274.

L. Brim et al. (Eds.): FMICS and PDMC 2006, LNCS 4346, pp. 67–83, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

68 H. Säıdi

of eliminating detail that has been shown to be irrelevant from more detailed
models that are more obviously accurate and faithful.

Symmetry reduction is an abstraction technique that reduces the size of the
state space search by identifying computations that, because of the symmetry in
the model, are redundant. Models of distributed systems comprising many iden-
tical components exhibit considerable symmetry. Since multiple components play
the same functional role, and therefore interact with their environment in the
same way, the identity of a component during analysis is often irrelevant. Multi-
threaded programs can also be amendable to symmetry reductions to overcome
the potential unbounded number of threads.

At least two natural notions of symmetry — what might be called absolute and
relative symmetry — can be explicated in terms of frame automorphisms, which
are, roughly speaking, one-to-one homomorphisms that map the frame 〈S, R〉 of a
model M that represents a set S of states and a transition relation R, onto itself.
This allows the construction of a quotient MG formed by the construction of equiv-
alence classes among states that are not distinguished by elements of the group
G of permutations. The size of the model MG can potentially be exponentially
smaller than the size of M . The more symmetries are captured in G, the smaller
MG is. Since MG is bisimilar to M , then for a property ϕ, checking whether MG

satisfies ϕ is equivalent to checking whether M satisfies ϕ.
The symmetries that can be exploited during model checking are essentially

the intersection of the symmetries exhibited by the system and the symmetries
exhibited by the property. These sources of symmetries characterize much of
the large body of literature that studies symmetry reduction in model checking
[4, 9, 16, 6, 5, 11, 10, 17]. The original work of Emerson and Sistla [10] focuses
on systems with global symmetries where all components are permutable and
where the permutations of process identity preserve the valuation of atomic
predicates in the property of interest. In [6], a syntactic restriction is imposed on
the description language of the system, so that the permutations of components
in the system are trivially determined, but also requires a restriction on the
syntax of the properties as well. Recent work [11, 17, 9] tackles systems with
little or no symmetry at all. In this case, the construction of MG is done by first
computing an approximation of MG that assumes global symmetry, and then
refining it until only the relevant symmetries that guarantee bisimulation for a
given property are considered. In [17], model automorphisms are extended to
more than just permutations of process identity, but also to local variable-value
pairs. This more general notion is better captured by the notion of generalized
frame automorphism.

While state-exploration algorithms exploiting symmetry reduction by explor-
ing MG instead of M are well developed, little has been done in discovering
the symmetries of a system, and automating the construction of MG using those
symmetries. What is even less researched is discovering symmetries that are par-
ticular to a temporal property. If we can automate and speed up the process of
discovering the symmetries that are possible for every single property, we would
achieve better state-space reduction and provide a much more flexible framework

Discovering Symmetries 69

for the analysis of a large class of distributed systems. What is of interest to us is
not to exploit only symmetries that induce a bisimulation of the state graph so
that all properties are preserved, but to provide an automated way of discovering
some or all of the symmetries that can be exploited for every single property of
interest, achieving therefore better reduction than classical symmetry reduction
methods.

This paper proposes a general framework for discovering symmetries in sys-
tems that exhibit global or local symmetries depending on the property of inter-
est. Our work extends previous symmetry reduction techniques by making signif-
icant advances in automating generalized model automorphism discovery. Gen-
eralized model automorphism allows us to discover symmetries between states
satisfying arbitrary predicates while preserving the property of interest. There-
fore, we do not only discover symmetries in systems composed of several identical
processes, but we can discover symmetries in the state space of a single process.
Even when processes are not symmetric and their identities cannot be permuted,
part of their local state space can be permuted. The contribution of this paper
can be summarized as follows:

– An anytime symbolic algorithm for discovering symmetries in systems that
exhibit global, local symmetries, or no apparent symmetries at all.

– Generalization of symmetry reduction to model automorphisms that preserve
a particular temporal property.

– Our schema for discovering symmetries is both incremental and conservative.
At any time, the set of already computed symmetries is guaranteed to define
a generalized model automorphism that guarantees the preservation of the
property. This guarantees that no spurious counterexample will be generated.

– The techniques developed have been applied to a real-life system that rep-
resents the largest implementation of a distributed multiagent system up
to this date, and help improve its architecture. As a result of our analysis,
flaws in the architecture of the system could be identified, and a set of test
cases has been generated from the model checking of an abstraction of the
systems that exploits symmetries. Furthermore, changes in the architecture
have been suggested so that relative symmetries can be extended into ab-
solute symmetries, making the analysis simpler and the construction of an
argument of the correctness of the architecture easier.

In the larger context of automated abstraction, our approach represents a
fundamentally different alternative to current automated abstraction approaches
based on abstract interpretation techniques [8], where an initial coarse abstract
domain is successively refined until the property is proved correct or a coun-
terexample is exhibited. This is the case of predicate abstraction [13] where an
initial partition of the state space using an initial set of predicates is refined
by adding more predicates when necessary [15] and therefore obtaining a more
precise description of the state space. Our approach can be viewed as a bottom-
up abstraction methodology that consists of first considering the system itself
and collapsing equivalent states without loss of information. The advantage is
that there is no need for refinement since there is no overapproximation of the

70 H. Säıdi

transition relation that might lead to spurious counterexamples. Our philosophy
consists of achieving enough state space reduction in order to be able to model
check the system rather than drastically reducing the state space by means of
overabstraction and then refinement.

In the rest of the paper, we first introduce our motivating application in
Section 2, followed by an illustrative example in Section 3. In section 4, we define
the notion of symmetry and model automorphism. In section 5, we describe a
generalization of model automorphism. In section 6 we describe our technique for
discovering generalized model automorphisms for a given property and describe
our algorithm for discovering symmetries, and in Section 7, we discuss the details
and results of the analysis.

2 Motivating Application

Our motivating example is UltraLog, a complex distributed multiagent system,
built using the Cougaar technology [3], and that represents the largest imple-
mentation of an agent system known today. Agents in UltraLog are organized in
enclaves that are under different administrative supervision. Enclaves are related
by wide area network connections, and every enclave includes a set of admin-
istrative agents that are used to enforce security and robustness policies. The
mission of the UltraLog system requires that most agents are available when
they are solicited. To ensure such a fundamental property, UltraLog relies on
the following robustness mechanisms:

– Intelligent mobility: Agents are moved to machines where the necessary re-
sources required to perform their tasks are guaranteed to be available.

– Failure recovery: Failure of individual agents or machines is dealt with by
restarting agents on different machines using the following mechanisms: au-
tomatic restart when agents fail, migration of an agent when the machine
on which it runs fails, and restoration of the state of the agents after failure
using local and replicated storage

Every set of agents in an enclave is monitored by a set of management agents, also
called managers. The role of a manager is to monitor a set of agents by checking
that every single one of them emits regular heartbeats. When an agent’s heart-
beat is not received, the agent is restarted on a different node along with all
the agents that were on the same node. Each agent, manager, and node requires
an authentication certificate that enables it to interact with its environment.
Authentication certificates are delivered by a set of certificate authorities (CAs)
organized in a hierarchical manner. CAs are themselves implemented as agents
with the appropriate plug-ins to play their role as CAs, and they therefore re-
quire other CAs. There is one root certificate authority. When a node, a manager,
an agent, or a CA is restarted, it combines a built-in certificate with the cer-
tificate of the manager that initiated the restart into a single request for a new
certificate from its CA. Our model of UltraLog is an abstraction of the current
implementation in which timing and network information is abstracted away.

Discovering Symmetries 71

The model is parametrized by the number of agents, robustness managers, se-
curity managers, certificate authorities, nodes, replicated storage locations, and
enclaves. For simplicity, an agent, a manager, or a certificate authority can be
in either its init, alive, or dead state, and a node can be either up or down. The
global state is the composition of the states of all agents, managers, certificate
authorities, their respective locations, and the state of every node.

Many aspects of the UltraLog architecture break the symmetry that one might
exploit among agents, managers, CAs, or nodes. Agents, for instance, need to
be distinguished depending on their managers, their CAs, and their locations,
and similarly for managers, and CAs. Furthermore, depending on the property,
more symmetries can be exploited. Consider, for instance, the property stating
that every agent playing the role of a certificate authority that dies is eventually
restarted and becomes available:

ϕ = ∀(i : CA) : �(�(alive(i)))

Each CA i is initially an agent in its init state. If i’s CA defined by the predi-
cate certificate(i) is running, that is, it is in its alive state, then it requests a
certificate from it. Once the certificate is delivered, the agent i moves to its alive
state and starts playing its role as a CA. i can move to state dead in two cases: if
the node on which it runs goes from its state up to down, or if i’s manager is no
longer receiving i’s heartbeat. In either case, i is declared dead and its certificate
revoked. i is then moved to another node if its original node is compromised, or
restarted on the same node otherwise. Nodes on which agents run can go down
in a nondeterministic way, and are restarted in a nondeterministic way as well.

Let us assume for a moment that there are three CAs such that CA 1 is the
root certificate, and plays the role of certificate authority for CA 2 and CA 3. It
is clear from the description of the transition relation of each CA, that the three
CAs are not symmetric, and that the permutation of CA 1, CA 2, and CA 3
does not induce an automorphism of the model. So, instead of assuming that all
CAs are symmetric or permutable until proven otherwise following the approach
of [17], we start by considering all CAs as being nonpermutable, and discovering
incrementally what possible permutations they might allow. Furthermore, it is
possible that even if no permutation among the CAs is possible, there exists
some predicate p(i) such that any state where p(i) holds is symmetric to a state
where p(j) holds where i and j are different CAs. In fact, we can find arbitrary
pairs of predicates p and q that may or may not refer to component identity, or to
local variables of components so that the permutation of a state satisfying p by
a state satisfying q defines a model automorphism. Using our approach, we are
able to discover that CA 2 and CA 3 are permutable. Our approach determines
that since CA 2 and CA 3 have the same dependencies up to permutation, they
are themselves permutable. The justification is in the fact that both CA 2 and
CA 3 depend on CA 1, and on their local nodes on which they run. Since the
states of individual nodes depend only on the environment, node identities are
permutable as well. Another important condition that allows the permutation of
CA 2 and CA 3 is that permuting 2 and 3 in ϕ leaves the property unchanged.

72 H. Säıdi

The symmetry reduction techniques in the literature cannot handle the dy-
namic aspect of the Ultralog architecture where agents, managers, and CAs are
mobile and are moved from node to node. This makes the permutation of agents,
managers, CAs, and nodes respectively very tricky. Multiagent systems as well
as new emerging architectures such as sensor networks are a challenge to the
state-of-the-art abstraction techniques such as symmetry reduction techniques,
and tool support for automatically computing useful abstractions is necessary.
Traditional symmetry reduction techniques view systems composed of identical
components in isolation. In a multiagent system or mobile sensor network, these
components operate in a dynamic environment that is constantly changing for
each component. Therefore, a much finer analysis is required to discover what
aspect of the behavior of these components, and their environment can be safely
considered symmetric for a particular property of interest.

3 An Illustrative Example

Following (Figure 1) is a toy example that illustrates the techniques for com-
puting generalized model automorphisms. The example is a program with three
boolean variables p, q, and r, and two transitions τ1 and τ2. All the variables are
true in the initial state.

Fig. 1. A simple example of failed symmetry computation

We can exploit symmetries in this program by finding pairs of arbitrary pred-
icates (p1, p2) such that we can permute states that satisfy p1 and states that
satisfy p2. We denote by σ0 = (p1, p2) such a permutation. Let us consider the
pair (p, q). We first compute the dependencies for each predicate. The validity
of p depends on the predicate q ∧ r and the validity of the predicate q depends
on the predicate p ∧ ¬r. If p and q have the same dependencies, then we can
consider that p and q are permutable. If not, we check whether the dependencies
are themselves permutable predicates. Notice that it is not necessary to check
whether q ∧ r and p ∧ ¬r are permutable, but only to check whether r and ¬r
are, because the predicates q ∧ r and p ∧ ¬r can be simplified modulo the initial
permutation (p, q) since the dependencies of p and q have already been com-
puted. The predicates r and ¬r are not permutable since they do not depend

Discovering Symmetries 73

Fig. 2. A simple example of successful symmetry computation

on any other predicate except the initial state. At the initial state r is true and
therefore ¬r is false. We then conclude that (p, q) is not a valid permutation.

Consider now the second example in Figure 2 where now the program has four
variables p, q, r, and z. The dependencies of p and q are respectively q∧r and p∧z.
These dependencies are simplified modulo the permutation σ0 = (p, q) and yield
the pair (r, z). The dependencies of r and z are respectively the expressions f(p)
and f(q). These dependencies are equivalent modulo the permutation σ0 = (p, q).
Therefore, p and q are permutable because all their dependencies are either
equivalent or permutable modulo the permutation σ0 = (p, q). However, this is
not enough since we have to make sure that in the initial state both p and q hold
the same value. If the initial values of p and q are unknown, which is the case
where p and q contain input variables, then p and q are permutable for input
values that make both p and q true.

The permutation σ = (p, q)◦(z, r) induces a generalized model automorphism.
Therefore, for any temporal logic property where the permutation of p and q
results in an equivalent property, it is only necessary to explore the successor of
a single representative state instead of the successors of all the states that are
equivalent modulo the permutation σ.

4 Defining Symmetry

Before describing our procedure for discovering symmetries, we recall some pre-
liminary definitions and define symmetry reduction. The state space of a concur-
rent system is represented by a transition system. Let us say that a transition
system M is a quadruple 〈S, R, L, P 〉 where S is a nonempty set, called the set
of states of M , R is the transition relation of M , P is a set of atomic predicates,
and L : S → 2P is a labeling function. We denote by L(s) the values of the
predicates of P in s. We also denote by L(s)|Q the values in the state s of the
predicates of a subset Q of P with the convention that L(s)|∅ = ∅. A permuta-
tion on a state S is a bijection of S into itself. We designate by P the group of
permutations of S.

74 H. Säıdi

Definition 1 (symmetry Group). Given a transition system M =
〈S, R, L, P 〉, a subgroup G of P is called a symmetry group of M if for all per-
mutations σ of G:

(s1, s2) ∈ R iff (σ(s1), σ(s2)) ∈ R

That is, G preserves the transition relation R. Not all permutations are property
preserving. Only permutations that preserve certain atomic predicates — that
is, permutations that form an invariance group — are useful.

Definition 2 (Invariance Group). Given a transition system M =
〈S, R, L, P 〉, and let Q be a subset of the set of predicates P . A symmetry group
G of M is called an invariance group of M for Q if for all permutations σ of G
and for every atomic proposition β in Q, L(s)|{β} = L(σ(s))|{β}. In other words:

L(s)|Q = L(σ(s))|Q

That is, G preserves the transition relation R and the atomic predicates of Q.
The symmetry group G defines an equivalence relation on S where the equiv-
alence class of a state s is designated by its representative [s] defined by [s] =
{s′ ∈ S|∃σ ∈ G, σ(s) = s′}. This equivalence defines a quotient of the transition
system M .

Definition 3 (Quotient Transition System). Given a transition system
M = 〈S, R, L, P 〉, and an invariance group G of M for P , a quotient transi-
tion system for M modulo G is the transition system MG = 〈SG, RG, LG, P 〉
where

1. SG = {[s]|s ∈ S}
2. RG = {([s1], [s2])|(s1, s2) ∈ R}
3. LG : SG → 2P is such that ∀s ∈ S : LG([s]) = L(s)

The transition systems M and MG are bisimilar. Therefore, G strongly preserves
every CTL* property ϕ with atomic predicates in P .

Theorem 1. Given a transition system M = 〈S, R, L, P 〉 and G an invariance
group of M for P , then for any CTL* property ϕ where only atomic predicates
of P appear in ϕ:

M |= ϕ ⇔ MG |= ϕ

5 Generalized Invariance Groups

Invariance groups capture the symmetries in a transition system and allow the
preservation of all properties that use only atomic predicates in P . This re-
striction can be removed by allowing that symmetric states s and σ(s) do not
necessarily agree on the predicates of P .

Discovering Symmetries 75

Definition 4 (Generalized Invariance Group). Given a transition system
M = 〈S, R, L, P 〉, G an invariance group of M for P , and a mapping γ : P → P ,
the pair 〈G, γ〉, denoted by Gγ , is called a generalized invariance group of M if
for all permutations σ of G:

∀s ∈ S, L(s) = γ(L(σ(s)))

In the definition above, L(σ(s)) is the set of all atomic predicates that are true
in the state s, and γ(L(σ(s))) replaces each of those predicates by its corre-
sponding permutation. The generalized invariance group defines a generalized
automorphism of M where equivalent states are not required to agree on the
set of atomic predicates. This generalization that admits swapping of arbitrary
predicates will achieve more symmetry reduction for some properties. The most
trivial ones are the properties ϕ such that ϕ and γ(ϕ) are equivalent, where γ(ϕ)
is defined as the property ϕ where every atomic predicate β appearing in ϕ is
substituted by γ(β). Considering generalized invariance groups is a powerful ap-
proach to state space reduction. Permutations between states are not restricted
to permutation of process indices anymore. Even if two processes i and j are not
symmetric, some of their respective behaviors might be. Therefore it is possible
that two predicates p(i) and p(j) can be symmetric but not i and j. Another
consequence of considering generalized invariance groups is that symmetry re-
duction cannot be restricted to concurrent systems defined by the composition
of identical processes, but can be defined in general for arbitrary systems.

Theorem 2. Given a transition system M = 〈S, R, L, P 〉, a generalized invari-
ance group Gγ of M for P , and any temporal property ϕ where only atomic
predicates of P appear in ϕ. If ϕ is invariant under γ, that is, ϕ = γ(ϕ) then:

M |= ϕ ⇔ MGγ |= γ(ϕ)

From now on, we consider ϕ to be a Linear Temporal Logic (LTL) formula. The
main importance of Gγ and similar sorts of structure-preserving mappings is
that a computation

τ = 〈s0, s1, s2, . . .〉
and its image under σ

σ(τ) = 〈σ(s0), σ(s1), σ(s2), . . .〉

cannot be distinguished by a certain class of logical formulas. Hence, there is
no need for considering both τ and σ(τ) when searching for a refutation of ϕ.
In other words, after a (generalized) model automorphism has been discovered,
each state s can be identified with its image σ(s) under σ to reduce the size of
the state space prior to model checking.

6 Computing Symmetries

We propose an algorithm that takes as input a system description and a temporal
property ϕ and produces a generalized invariance group Gγ . Since Gγ is com-
puted so that it preserves only the property ϕ, dramatic state space reduction

76 H. Säıdi

can be achieved. For a given property ϕ, our approach consists of finding a pair
(pi, qi) of predicates such that the corresponding permutation σi = (pi, qi) defines
a generalized automorphism. That is, it preserves the property ϕ. Once such pair
is found, it is possible to find a new pair (pj , qj) of predicates such that its cor-
responding permutation σj = (pj , qj) defines also a generalized automorphism.
The composition of σi and σj is therefore also a generalized automorphism.

Definition 5 (Program). A program Prog is a tuple < V , T = {τ1, · · · , τn},
I >, where V is a set of program variables, T is a set of transitions or guarded
commands, and I is a predicate characterizing the set of initial states.

Each transition τ is a guarded command

guard −→ v1 ::= e1, · · · , vn ::= en

where {v1, · · · , vk} ⊆ V . The boolean expression guard is the guard of the transi-
tion τ . Each variable vi is assigned with an expression ei of a compatible type. A
state of a program Prog is a valuation of the system variables of V . We also recall
the definitions of predicate transformers over transition systems. The predicate
transformer pre expressing the precondition by a transition τ of a predicate p
over the state variables of V is defined as follows:

pre[τ](p) = ∃V ′.actionτ (V , V ′) ∧ p(V ′)

where actionτ (V , V ′) is defined as the relation between the current state and
next state, that is, the expression

guard ∧
k∧

i=1

v′i = ei

The semantics of a program P is given by its computational model M represented
by a transition system defined in Section 4. We denote by DNF (e) the disjunc-
tive normal form of the expression e. We also denote by [e]σ=(p,q) the expression
e where the predicate p and the predicate q are simultaneously substituted by
the predicate q and the predicate p respectively. For instance, [p∧q]σ=(p,q) is the
expression q ∧ p. We also have [q]σ=(p,q) = p. That is, the expression p and the
expression q are equivalent modulo the permutation σ. We also define the sim-
plification of an expression modulo a permutation. In Figure 1, the expressions
q ∧ r and p ∧ ¬r are simplified to r and ¬r respectively modulo the permuta-
tion σ = (p, q). The simplification is done by translating both expressions to
a disjunctive normal form, and then eliminating disjuncts that are equivalent
modulo σ. The remaining disjuncts are conjunctions of atomic expressions and
are further simplified by eliminating conjuncts that are equivalent modulo σ. We
denote by Simp(e, σ), the simplification of e modulo σ. For instance, we have

Simp(p ∨ (q ∧ r), σ = (p, q)) = r = Simp(q ∨ (p ∧ r), σ = (p, q))

Discovering Symmetries 77

6.1 Property-Based Permutations

Definition 4 is our starting point in finding symmetries. Let us first define per-
mutations of states that preserve a given property ϕ.

Definition 6 (ϕ-Permutation). Let ϕ be an LTL formula. A mapping σ :
S → S is a ϕ-permutation if for every infinite sequence τ

τ |= ϕ iff σ(τ) |= ϕ

By definition, ϕ-permutations preserve the property ϕ. Given a model M and a
temporal logic property ϕ, the problem of discovering symmetries is the problem
of finding a set of ϕ-permutations. We propose an algorithm for finding permu-
tations by computing and then successively refining an initial permutation. Our
incremental approach allows us to provide users with a tradeoff between the
amount of reduction they want to achieve and the amount of symbolic compu-
tation that is required to generate the permutations. Our algorithm will find a
set of permutations that define a generalized invariance group. By showing that
these permutations preserve by construction the property ϕ, we ensure that these
permutations are ϕ-permutation.

6.2 Exploiting Dependencies

One obvious way of discovering ϕ-permutations is to exploit dependencies. Intu-
itively, for every sequence of states, any state that does not influence the property
ϕ can be substituted by another state that also does not influence the validity
of ϕ.

Definition 7 (dependency of a predicate). Let p be a predicate. The depen-
dency of a predicate p with respect to a transition τ , noted dep(p)[τ], is

dep(p)[τ] =
{

pre[τ](p) if the assignments of τ affect p
p otherwise

The dependency of p with respect to a program, noted dep(p), is defined as

n∨
i=1

dep(p)[τi]

We extend the definition of dependency to temporal formulas as follows:

dep(ϕ) =
∨

pi∈pred(ϕ)

dep∗(pi)

That is, the union of the transitive closure of the dependency computation for
every atomic predicate pi appearing in ϕ.

Proposition 1. Let s and t be two states such that L(s)|dep(ϕ) = L(t)|dep(ϕ).
The permutation σ that maps s to t and vice versa, and maps every other state
to itself, is a ϕ-permutation.

78 H. Säıdi

Computing a first set of dependencies can be used to slice a model, and therefore
reduce the state space. This can be expressed as a permutation σ0 defined as
follows:

∀s ∈ S σ0(s) =
{

t if L(s)|dep(ϕ) = L(t)|dep(ϕ)
s otherwise

that is, σ0 does not distinguish states that agree on the valuation of predicates
in dep(ϕ). We consider σ0 to be the first ϕ-permutation to be extracted from
the property ϕ.

6.3 Refining Symmetries

Exploiting dependencies allows the permutation between sequences of states
that do not affect the property ϕ. While this can sometime lead to a signifi-
cant reduction in the state space to explore, it basically exploits a very simple
case of symmetry. We propose to further exploit dependencies by refining the
already computed symmetries and discovering more symmetric states. Given a
ϕ-permutation σ0 such as the one computed previously, we know that σ0 does
not distinguish states that agree on the valuation of predicates in dep(ϕ). Our
approach for refining σ consists in finding a pair of predicates p and q in dep(ϕ),
such that the permutation between states that agree on all the valuations of
predicates in dep(ϕ) but p and q is a ϕ-permutation. That is, the permutation
of states s1 and s2 satisfying respectively p and q is a ϕ-permutation.

Definition 8 (permutability). Let p and q be two arbitrary predicates. p and
q are permutable if and only if one of the following is true:

– dep(p) and dep(q) are equivalent.
– dep(p) and dep(q) are permutable.

In other words, states satisfying p and q can be permuted if and only if their
dependencies are the same up to symmetry. That is, they depend on the same
states, or they depend on states that are themselves permutable.

Definition 9 (permutation induced by permutable predicates). Let p
and q be two permutable predicates. The permutation induced by p and q noted
σ(p,q) is the permutation defined recursively as follows:

σ(p,q) =
{

(p, q) if dep(p) ≡ dep(q)
(p, q) ◦ σ(dep(p),dep(q)) if dep(p) and dep(q) are permutable

That is, the permutation of p and q and their dependencies.

While Definition 8 allows us to define what states are permutable, the following
proposition provides a way of finding p and q that are relevant to a particular
property ϕ and such that σ(p,q) is a ϕ-permutation.

Proposition 2. Let s and t be two states such that s and t satisfy respec-
tively the predicates p and q. Let σ be the permutation such that σ(s) = t, and
σ(s′) = s′ for every state s′ satisfying neither p nor q. The permutation σ is a
ϕ-permutation if and only if both of the following are true:

Discovering Symmetries 79

Begin
X = X0 ∪ pred(ϕ);
σ = σ0;
while X �= ∅ Do
chose q ∈ X and p ∈ X
if permutable?(p, q, σ) ∧ [ϕ]σ(p,q) = ϕ

then
σ = σ ◦ σ(p,q);
X = X \ {p} ∪ {q} ∪ dep∗(p) ∪ dep∗(q);

endif
Od
End

Fig. 3. Algorithm for computing symmetries

– p and q are permutable
– [ϕ]σ=(p,q) = ϕ

That is, p and q are permutable and permuting p and q leaves the property
unchanged.

Proof. The proof is by induction on the structure of the dependencies of p and
q.

The initial permutation and its successive refinements can be combined to form
a single permutation that can be applied to the entire state space. The following
proposition shows that the composition of all permutations computed by our
algorithm is a permutation that allows symmetry reduction.

Proposition 3. Let σi be a ϕ-permutation and let σj be a ϕ-permutation. The
composition σi ◦ σj is also a ϕ-permutation.

6.4 An Algorithm for Computing Symmetries

Our algorithm for computing permutations is described in Figure 3. We consider
an initial arbitrary set X of candidate predicates that includes the predicates
in the property ϕ. We pick two predicates p and q and check if they are per-
mutable by computing their dependencies. If p and q are permutable, then p and
q are removed from X . We also remove the predicates appearing in dep∗(p) and
dep∗(q) from X since if two permutable predicates p′ and q′ appear in X and
also appear in the dependencies of p and q, then the permutation σ(p,q) subsumes
the permutation σ(p′,q′).

Figure 4 describes the procedure permutable? that checks if two predicates
are permutable. First we compute the dependencies of p and q and put those
expressions in disjunctive normal form. We check if the dependencies are equiv-
alent modulo the permutation of p and q. If so, we establish that p and q are
permutable if and only if p and q are equivalent in the initial state. If not, we

80 H. Säıdi

permutable?(p, q, σ)
Begin
e1 := DNF (dep(p))
e2 := DNF (dep(q))
if e1 ≡ [e2]σ

then I ⇒ p ≡ q
else permutable?(Simp(e1, σ), Simp(e2, σ), σ)

End

Fig. 4. Procedure for checking if two predicates are permutable

simplify the dependencies modulo the permutation of p and q and check if the
simplified dependencies are themselves permutable.

From the description of the algorithm, it seems that the complexity of com-
puting permutations is reduced to the complexity of a symbolic pre computation.
However it is much simpler since we propagate the permutations backward and
use them in simplifying the dependency predicates. In practice this amounts to
a much faster computation of dependencies. Another practical approach is to
weaken the notion of pre computation and only consider a guard as being the
precondition of any predicate by any transition for which the guard is not equal
to true.

Theorem 3. Let σ a permutation computed by the algorithm of Figure 3 for
a property ϕ. The permutation σ is a ϕ-permutation, and for every infinite
sequence τ of the corresponding transition system M , σ(τ) is also a sequence
of M .

Proof. First, we can establish that for a given p and q, σ(p,q) is a ϕ-permutation.
We can also establish that the composition of two ϕ-permutations is a
ϕ-permutation. Finally, the definition of dep(p) and dep(q) allows us to show
that σ(p,q) preserves the transition relation R.

7 Experimentation

UltraLog is modeled using the SAL specification and verification environment
[1]. SAL stands for Symbolic Analysis Laboratory. It is a framework for com-
bining different tools for abstraction, program analysis, theorem proving, and
model checking toward the calculation of properties (symbolic analysis) of tran-
sition systems. A key part of the SAL framework is an intermediate language
for describing transition systems. This language serves as the target for trans-
lators that extract the transition system description for popular programming
languages such as Java, and Statecharts. The intermediate language also serves
as a common source for driving different analysis tools through translators from
the intermediate language to the input format for the tools, and from the output
of these tools back to the SAL intermediate language. Our dependency analysis
uses the SAL slicer developed in [12]. The input of the slicing algorithm consists

Discovering Symmetries 81

of the slicing criterion and a SAL description of the system in the form of the
parallel composition of modules. The slicing criterion is in our case a set of local
and global variables appearing in the set of atomic predicates in the formula. The
output of the slicing algorithm is another SAL description of the same system
wherein irrelevant code from each module has been sliced out. When considering
two predicates p and q, the slices with respect to the variables appearing in p and
the variables appearing in q are compared for equivalence or for permutability.
As a result of using the slicing program as a dependency analysis tool, we can
guarantee that the permutations generated by our algorithm correspond to runs
in the system. The following is the description of the results of the algorithm for
two different properties. The first property expresses that every agent playing
the role of a certificate authority that dies is eventually restarted and becomes
available:

ϕ1 = ∀(i : CA id) : �(�alive(i))

The dependency computation allows us to generate the following predicates that
appear in the SAL description of UltraLog:

– location(i) = n

– location(ca∗(i)) = n

– ca∗(i) = c

These predicates refer to the free variables n and c representing respectively
nodes and certificate authorities. These predicates indicate that in order to verify
theproperty above, it is not necessary to consider the behavior of any agent nor
any manager, but only the certificate authorities and their associated certificate
authorities, and the nodes on which they run. This allows us on the one hand to
consider all possible permutations among agents as well as among all managers,
and on the other hand to exploit a symmetry among certificate authorities. Since
ca(i) designate the certificate authority of agent i, we realize that if i and j are
two CAs agents, then i and j are permutable if they have the same CA. A similar
property can be verified for application agents.

ϕ2 = ∀(i : Agent id) : �(�alive(i))

The analysis of the dependencies of the predicate alive(i) leads to the following
predicates, and their corresponding permutations.

– location(i) = n

– ∃j : Agent. location(i) = location(j) ∧ manager(j) = manager(i)
– location(ca∗(i)) = n

– location(manager(i)) = n

– location(ca∗(manager(i))) = n

– enclave(n) = enclave(location(i))
– ca∗(i) = c

– ca∗(manager(i)) = c

82 H. Säıdi

That is, agents i and j are permutable if and only if, their corresponding
CAs and managers are permutable, and if their locations are permutable. We
experimented with an agent society of about 15 agents and 3 managers and
3 CAs. The total number of states is about 66 × 106. The reduced model
for ϕ1 contains only about 103 states. The reduced model for ϕ2 has about
25 × 103 states. The reduced models for various properties have been used for
the purpose of test case generation based on the techniques described in [14]. The
test cases have been useful in identifying flaws in the UltraLog implementation
and architecture. More details about the example can be found in [2].

8 Discussion

We have presented an automated approach for computing symmetries that are
induce by generalized model automorphisms. Our work generalizes previous work
on symmetry reduction and allows the discovery of symmetries in systems that
exhibit relative or global symmetry in the forms of permutations of states satis-
fying predicates. Our approach is incremental and is implemented as an anytime
algorithm. Our approach is applicable to models of a wide variety of complex
systems and architectures such as multiagent systems, mobile sensor networks,
and multithreaded software, and has been demonstrated on a large industrial-
size system. Since our approach produces exact abstractions, it can be combined
with any other abstraction technique.

References

1. http://sal.csl.sri.com.
2. http://www.csl.sri.com/users/saidi/symmetry.
3. Cognitive agent architecture (Cougaar) open source project. www.cougaar.org.
4. K. Ajami, S. Haddad, and J.-M. Ilié. Exploiting symmetry in linear time tempo-

ral logic model checking: One step beyond. Lecture Notes in Computer Science,
1384:52–62, 1998.

5. E. M. Clarke, T. Filkorn, and S. Jha. Exploiting symmetry in temporal logic model
checking. In Courcoubetis [7], pages 450–462.

6. C.N. Ip and D.L. Dill. Verifying systems with replicated components in Murphi.
In Rajeev Alur and Thomas A. Henzinger, editors, Proceedings of the Eighth Inter-
national Conference on Computer Aided Verification CAV, volume 1102 of Lecture
Notes in Computer Science, pages 147–158, New Brunswick, NJ, USA, July/Aug.
1996. Springer Verlag.

7. C. Courcoubetis, editor. Fifth International Conference on Computer-Aided Veri-
fication, volume 697 of LNCS, 1993.

8. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In popl77, pages
238–252. ACM Press, Jan. 1977.

9. E. Emerson, J. Havlicek, and R. Trefler. Virtual symmetry reduction. In 15th
Symposium on Logic in Computer Science (LICS’ 00), pages 121–131, Washington
- Brussels - Tokyo, June 2000. IEEE.

Discovering Symmetries 83

10. E. A. Emerson and A. P. Sistla. Symmetry and model checking. In Courcoubetis
[7], pages 463–478.

11. E. A. Emerson and R. J. Trefler. From asymmetry to full symmetry: New tech-
niques for symmetry reduction in model checking. In Proceedings of the Conference
on Correct Hardware Design and Verification Methods, volume 1703 of lncs, pages
142–156, 1999.

12. V. Ganesh, N. Shankar, and H. Säıdi. Slicing SAL. Technical report, Computer
Science Laboratory, SRI International, Menlo Park, CA 94025, 1999.

13. S. Graf and H. Säıdi. Construction of abstract state graphs with PVS. volume
1254, pages 72–83, Haifa, Israel, June 1997.

14. G. Hamon, L. deMoura, and J. Rushby. Generating efficient test sets with a model
checker. In 2nd International Conference on Software Engineering and Formal
Methods, pages 261–270, Beijing, China, Sept. 2004. IEEE Computer Society.

15. H. Säıdi. Model-checking guided abstraction and analysis. In 7th International
Static Analysis Symposium, SAS 2000, volume 1824, pages 377–396, June 2000.

16. Sistla, Gyuris, and Emerson. SMC: A symmetry-based model checker for verifica-
tion of safety and liveness properties. ACMTSEM: ACM Transactions on Software
Engineering and Methodology, 9, 2000.

17. A. P. Sistla and P. Gedefroid. Symmetry and reduced symmetry in model check-
ing. In Proceedings of the Thirteenth International Conference on Computer Aided
Verification CAV, volume 2102 of LNCS, pages 91–103, 2001.

On Combining Partial Order Reduction with
Fairness Assumptions�

Luboš Brim, Ivana Černá, Pavel Moravec, and Jǐŕı Šimša

Department of Computer Science, Faculty of Informatics
Masaryk University, Czech Republic

{brim,cerna,xmoravec,xsimsa}@fi.muni.cz

Abstract. We present a new approach to combine partial order reduc-
tion with fairness in the context of LTL model checking. For this purpose,
we define several behaviour classes representing typical fairness assump-
tions and examine how various reduction techniques affect these classes.
In particular, we consider both reductions preserving all behaviours and
reductions preserving only some behaviours.

1 Introduction

Fairness and partial order reduction are often indispensable for the verification of
liveness properties of concurrent systems. The former is mostly needed in order
to eliminate some ”unrealistic” executions, while the latter is one of the most
successful techniques for alleviating the state space explosion problem.

In model-based verification the adequacy of the model is important. As the
model is a simplification of the system under consideration, some behaviours
exhibited by the model may not be real ones. To tackle this problem the model
can be refined or, alternatively, some assumptions that disqualify fictional be-
haviours in the model are used. For example, when modelling a multi-process
concurrent system with a shared exclusive resource we may want to assume, for
the sake of simplicity, that no process can starve though some behaviours of
the model may not satisfy this assumption. This concept is commonly known as
fairness assumptions or simply fairness.

The most common form of fairness [4,7] is unconditional fairness that consid-
ers only behaviours with some action occurring infinitely many times. Further it
is reasonable to take into account enabledness of actions. This gives rise to even
finer concepts. First, strong fairness that considers only behaviours where every
action enabled infinitely many times is taken infinitely many times. Second, weak
fairness that disqualifies behaviours with some action continuously enabled from
a certain moment and subsequently never taken.

It might appear that the reason for using fairness is that it allows for simpler
models. However, this simplicity is often outbalanced by the complexity of al-
gorithms operating on a model with fairness. In fact, the main reason for using
� This work has been partially supported by the Grant Agency of Czech Republic grant

No. GACR 201/06/1338. and by the Academy of Sciences of the Czech Republic
grant. No. 1ET408050503.

L. Brim et al. (Eds.): FMICS and PDMC 2006, LNCS 4346, pp. 84–99, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

On Combining Partial Order Reduction with Fairness Assumptions 85

fairness is that it simplifies the modelling process—work that has to be done by
a human and not by a computer.

By contrast, partial order reduction allows for reduction of a state space of
a modelled system [5,8,9,11]. A particular instance of the concept consists of a
set of conditions that the reduction must satisfy. The idea behind partial order
reduction is that it might not be necessary to consider all enabled transitions at
a given state, but only a certain ample subset.

The justification for such reduction varies and depends on the nature of prop-
erties being examined. For example, we may select only one of mutually in-
dependent actions if we are interested in deadlocks. In general, a behavioural
equivalence over a set of behaviours is defined and the reduction is required to
contain a representative of each equivalence class.

In our previous work [2] we have proposed a combination of distribution and
partial order reduction; concepts that push back the frontiers of practical verifi-
cation, both fighting the state space explosion in its own way. In this paper we
examine a combination of partial order reduction (and distribution) with fair-
ness—a concept used for simplifying the process of modelling. We define four
behaviour classes reflecting typical fairness assumptions and two partial order
reduction techniques. For each behaviour class and reduction technique we prove
or disprove that the reduction preserves behaviours of the class.

Closest to our work on combination of partial order reduction and fairness is
that of Peled [8]. Peled uses equivalence robustness of properties to ensure that
all fair runs in the original state space have at least one stuttering equivalent
fair run in the reduced state space. Since fairness assumptions are not generally
equivalently robust, one has to add more dependencies among transitions in
order to achieve equivalence robustness. In author’s later work [9] the discussion
continues and on-the-fly state space generation is taken into account.

To contrast with our results, Peled considers only strong and weak fairness
and aims at preservation of all behaviours. Whereas we examine more fairness
assumptions and also study possibilities for better reduction.

This paper is organized as follows. Section 2 lays theoretical foundations for
modelling of a system, reviews partial order reduction, and formulates two of its
instances. The main theoretical contribution of the paper follows in Section 3
where we identify four behaviour classes and resolve whether they are preserved
under the proposed reductions. After these results are established, we discuss
their practical use in Section 4.

2 Partial Order Reduction

As a model we use labelled transition system. Let S be a set of states and transi-
tion be a partial function α : S → S, that is, a transition “can be taken” between
different pairs of states. A labelled transition system (LTS) is then defined as a
tuple M = (S, s0, Δ, L), where s0 ∈ S is an initial state, Δ is a set of transitions
over S, and L : S → 2AP is a labelling function that assigns to each state a
subset of some set AP of atomic propositions.

86 L. Brim et al.

Furthermore, a set of transitions enabled at a state s, denoted enabled(s), is
a set of all α ∈ Δ such that α(s) is defined. A reduction of M is then defined as
a pair (M, ample) where ample is a function assigning to each state s a subset
of enabled(s).

A path in M from a state s1 is a finite or infinite sequence π = s1
α1−→ s2

α2−→
. . .

αn−1−→ sn
αn−→ . . . of states interleaved with transitions—ending with a state in

the finite case—such that si ∈ S, αi ∈ Δ and αi(si, si+1) for each index i.

Let η = r1
α1−→ r2

α2−→ . . .
αm−1−→ rm be a finite path and σ = s1

β1−→ s2
β2−→

. . .
βn−1−→ sn

βn−→ . . . a finite or infinite path. Then first(σ) = s1 denotes the first
state of σ and last(η) = rm denotes the last state of η. If last(η) = first(σ) then

the path η ◦ σ = r1
α1−→ r2

α2−→ . . .
αm−1−→ s1

β1−→ s2
β2−→ . . .

βn−1−→ sn
βn−→ . . . is the

concatenation of the paths η and σ.
Finally, let γ = (γ1, γ2, . . . , γn) be a sequence of transitions from Δ. We say

that γ is a cycle if for every state s, γ1 ∈ enabled(s), γ2 ∈ enabled(γ1(s)), . . . ,γn ∈
enabled(γn−1(. . . (γ1(s)) . . .)) implies γn(. . . (γ1(s)) . . .) = s.

In order to simplify the presentation of the particular instance of the partial
order reduction technique we are going to suggest, we define two relations which
will help to formulate conditions constituting the instance.

Definition 1. An independence relation ¬D ⊆ Δ × Δ is a symmetric, anti-
reflexive relation, satisfying the following three conditions for each state s ∈ S
and for each (α, β) ∈ ¬D:

1. Enabledness – If α, β ∈ enabled(s), then α ∈ enabled(β(s)).
2. Commutativity – If α, β ∈ enabled(s), then α(β(s)) = β(α(s)).
3. Neutrality – If α ∈ enabled(s) and β ∈ enabled(α(s)), then β ∈ enabled(s).

The dependency relation D is the complement of ¬D.

Note that our definition of ¬D differs from the standard definition of ¬D given
in the literature. In particular, we add the neutrality condition and therefore
our definition of ¬D is more strict. We argue that, in practice, the relation ¬D
is approximated using rules conforming to our definition, which allows for more
concise proofs.

Definition 2. An invisibility relation ¬V ⊆ Δ is a unary relation with respect
to a set of atomic propositions AP , where for each α ∈ ¬V and for each pair of
states s, s′ ∈ S such that α(s, s′), L(s) ∩ AP = L(s′) ∩ AP holds. The visibility
relation V is the complement of ¬V .

The reduction of a given state space is defined by providing a set of conditions the
ample function has to fulfil to guarantee that behaviours with certain properties
are preserved. In the case of properties expressed as formulas from a fragment
of Linear Temporal Logic without any next modalities (LTL−X) the following
conditions are used [3].

C0. ample(s) = ∅ iff enabled(s) = ∅.

On Combining Partial Order Reduction with Fairness Assumptions 87

C1. Along every path in the model starting from s, the following condition
holds: a transition that is dependent on a transition in ample(s) cannot
occur without a transition in ample(s) occurring first.

C2. If enabled(s) �= ample(s), then every α ∈ ample(s) is invisible.
C3. A cycle is not allowed if it contains a state in which some transition α is

enabled, but is never included in ample(s) for any state s on the cycle.

Theorem 1 ([3]). Let ϕ be a LTL−X formula, M = (S, s0, Δ, L) be a LTS and
M ′ = (M, ample) a reduction of M satisfying conditions C0 through C3. Then
M |= ϕ ⇔ M ′ |= ϕ.

We now formulate a new condition that is supposed to replace the condition C3
and consequently allow for better reduction. Downside of the new condition is
that reduction based on it may not preserve all behaviours.

C4. From every state s there is reachable a fully expanded state i.e. state such
that ample(s) = enabled(s).

In practice conditions C3 and C4 are ensured using provisos based on par-
ticular state space exploration algorithm. For example, when using depth first
search the following provisos are used.

P3. If ample(s) �= enabled(s), then none of ample(s) transitions points back to
stack.

P4. If ample(s) �= enabled(s), then at least one of ample(s) transitions does
not point back to stack.

It can be shown by a simple argument that provisos P3 and P4 indeed imply
conditions C3 and C4 respectively. Clearly, proviso P4 is weaker than proviso
P3 and thus generally yields better reductions. Further advantage of condition
C4 over condition C3 comes to light when combining partial order reduction
with distribution; to ensure condition C4 cycle detection is not necessary.

Based on the above conditions we can consider two reduction techniques. The
first one uses the original set of conditions and the second one makes use of
the new condition C4. In particular, when a reduction satisfies conditions C0
through C3 we say it is safe and when it satisfies conditions C0 through C2
and C4 we say it is aggressive.

3 Behaviour Classes

In this section we identify several behaviour classes and investigate whether
they are preserved by safe and/or aggressive reduction techniques. As we are
interested in preservation of properties expressed in LTL−X , we use stuttering
equivalence as the behavioural equivalence.

Definition 3. Two infinite paths η = r1
α1−→ r2

α2−→ . . .
αn−1−→ rn

αn−→ . . . and

σ = s1
β1−→ s2

β2−→ . . .
βn−1−→ sn

βn−→ . . . are stuttering equivalent, denoted σ ∼st η,

88 L. Brim et al.

if there are two strictly increasing infinite sequences of integers (i0, i1, i2, . . .) and
(j0, j1, j2, . . .) such that i0 = j0 = 0 and for every k ≥ 0:

L(sik
) = L(sik+1) = . . . L(sik+1−1) = L(rjk

) = L(rjk+1) = . . . L(rjk+1−1)

Definition 4. Let M is an LTS. An LTL−X formula ϕ is invariant under stut-
tering iff for each pair of paths π and π′ such that π ∼st π′, M, π |= ϕ iff
M, π′ |= ϕ.

Theorem 2 ([10]). Any LTL−X formula is invariant under stuttering.

3.1 Paths with Infinitely Many Visible Transitions

Let trans(π) denotes the sequence of transitions on a path π and vis(π) denotes
the sequence of visible transitions on a path π.

Theorem 3. Let M be an LTS and M ′ = (M, ample) be a safe reduction. Then
for each path σ in M such that |vis(σ)| = ∞ there is a path η in M ′ such that
σ ∼st η with |vis(η)| = ∞.

For the proof we refer to the construction of infinite sequence of infinite paths
π0,π1,π2,. . . from the proof of Theorem 1 (see [3], Section 10.6). For the hint on
the construction see appendix A.

Theorem 4. Let M be an LTS and M ′ = (M, ample) an aggressive reduction.
Then for each path σ in M such that |vis(σ)| = ∞ there is a path η in M ′ such
that σ ∼st η.

There are two key steps to prove Theorem 4. The first step is an observation that
it is sufficient to consider only paths without scattered cycles. The next step is
a construction of stuttering equivalent path for a path without scattered cycles.

Definition 5. A path σ contains a scattered cycle γ = (γ1, γ2, . . . , γn) iff:

– γ is a cycle
– every transition from γ is invisible
– there are paths θ1, . . . , θn+1 such that all transitions in θ1, θ2, . . . θi are in-

dependent on the transition γi and σ = θ1 ◦ (last(θ1)
γ1→ first(θ2)) ◦ θ2 ◦ . . . ◦

θn ◦ (last(θn)
γn→ first(θn+1)) ◦ θn+1.

Lemma 1. For each path σ in M with |vis(σ)| = ∞ there is an infinite path
σ′ in M such that σ ∼st σ′, first(σ) = first(σ′) and σ′ does not contain any
scattered cycle.

Proof: Let us suppose that σ contains a scattered cycle γ = (γ1, γ2, . . . , γn) and
σ = θ1 ◦ (last(θ1)

γ1→ first(θ2)) ◦ θ2 ◦ . . . ◦ θn ◦ (last(θn)
γn→ first(θn+1)) ◦ θn+1.

According to the definition of the scattered cycle, the transition γ2 is enabled
in the state first(θ2) and is independent on all transitions in θ2. Therefore there

On Combining Partial Order Reduction with Fairness Assumptions 89

is a path in M containing the scattered cycle γ and such that the transition γ2
precedes all transitions from θ2. Using the same argument repeatedly we show
that there is a path θ1 ◦(last(θ1)

γ1→ . . .
γn→ last(θ1))◦θ′2 ◦ . . . θ′n ◦θn+1 in M where

trans(θi) = trans(θ′i) for all i = 2, . . . , n.
As γ is a cycle, θ1 ◦ θ′2 ◦ . . . θ′n ◦ θn+1 is a path in M stuttering equivalent to

σ. It seems that in this manner we could iteratively remove all scattered cycles
appearing in σ. However, by removing a scattered cycle from a path we could
create a new one. Therefore to prove existence of stuttering equivalent path
without scattered cycles we consider all existing as well as potential scattered
cycles on the path σ simultaneously.

Let δ = (δ1, δ2, . . .) be a subsequence of trans(σ) such that either δi is a
transition of a scattered cycle in σ or there is a finite number of scattered cycles
that can be removed from σ—through the construction above—with δi becoming
a transition of a scattered cycle afterwards.

Let (α1, α2, . . .) be a sequence of transitions which remain in trans(σ) after
removing the subsequence δ. We prove that there is an infinite path σ′ in M such
that first(σ) = first(σ′) and trans(σ′) = (α1, α2, . . .) as these together guarantee
σ ∼st σ′.

We show that for all i, αi ∈ enabled(αi−1(. . . (α1(first(σ))) . . .)). Let δj occurs
in σ before αi. Then δj can be removed from the path together—with the cycle
it belongs to—and αi still remains enabled thanks to the arguments mentioned
above. Consequently, σ′ is a path in M and as vis(σ) = vis(σ′) and |vis(σ)| = ∞,
it is infinite. �

It can be shown that any aggressive reduction contains a path stuttering equiv-
alent to a given path in M without any scattered cycle. The construction of the
stuttering equivalent path is suspended until Appendix.

3.2 Process Fair Paths

In this subsection we assume, that LTS M is modelling a multi-process system
and P denotes the set of its processes. Further, let π≥i denotes the suffix of a
path π that is a subsequence of π starting at i-th state.

Definition 6. Let σ be an infinite path and M an LTS. Then for X ⊆ P,
trans(X , σ) denotes the set of all transitions on σ of a process from X .

For every X ⊆ P such that all α ∈ trans(X , σ) are independent on all β ∈
trans(P \ X , σ) that is (α, β) ∈ ¬D, we define a path proj(X , σ) as a path
resulting from σ after removing all transitions of processes from P \ X .

Definition 7. An infinite path σ is process fair if for every P ∈ P the number
of P’s transition on σ is infinite.

Theorem 5. Let M be an LTS and M ′ = (M, ample) a safe reduction. Then
for each process fair path σ in M there is a process fair path η in M ′ such that
π ∼st η.

Again, for the proof we refer to the construction of infinite sequence of infinite
paths π0,π1,π2,. . . , from the proof of Theorem 1 and we omit the rest.

90 L. Brim et al.

Theorem 6. Let M be an LTS and M ′ = (M, ample) an aggressive reduction.
Then for each process fair path σ in M there is a path η in M ′ such that π ∼st η.

Similarly to the proof of Theorem 4, there are two key steps to prove Theorem 6.
The first step is an observation that it is sufficient to consider only non-reducible
paths. The next step is the construction of stuttering equivalent path path for a
non-reducible path.

Definition 8. Let σ = s1
α1−→ s2

α2−→ . . .
αn−1−→ sn

αn−→ . . . be a path in M .
If exists k ∈ N and a non-empty set of processes X �= P such that

– all α ∈ trans(X , σ≥k) are independent on all β ∈ trans(P \ X , σ≥k),
– all transitions from trans(P \ X , σ≥k) are invisible,
– both proj(X , σ≥k) and proj(P \ X , σ≥k) are infinite,

then σ is k-reducible and the path σ′ = s0
α1−→ . . .

αk−1−→ sk ◦ proj(X , σ≥k) is a
k-reduction of σ. If no such k and X exists then σ is called non-reducible.

Lemma 2. Let σ be a path in M and σ′ be a k-reduction of σ. Then σ′ is a
path in M and vis(σ) = vis(σ′).

Proof: By a simple argument from definition of ¬D and k-reducibility. �

Lemma 3. Let σ be a process fair path in M . Then there is an infinite path σ′

in M such that σ ∼st σ′ and σ′ is non-reducible.

Proof: We inductively construct a finite sequence of paths σ0, σ1, . . . , σn such
that σ0 = σ and σn = σ′ and show that σi is a k-reduction of σi−1 for every
i = 1, . . . , n.

We start with σ0 = σ. If σi is k-reducible for some k and X we take the smallest
k and subsequently smallest possible X and we let σi+1 to be the respective k-
reduction of σi. Otherwise, the construction is finished.

Note that the construction is deterministic – as we choose the smallest possible
k and X – and finite since the sequence is strictly decreasing in the number of
processes which take a transition infinitely many times. �

Let σ be a non-reducible path in M resulting from the process fair path trans-
formation outlined above. The construction of a path stutter equivalent to σ in
an aggressive reduction (M, ample) can be found in Appendix.

3.3 Weakly Fair Paths

Definition 9. Let σ = s1
α1−→ s2

α2−→ . . .
αn−1−→ sn

αn−→ . . . be a path. If there do
not exist i and β such that for all j ≥ i, β ∈ enabled(sj) and β �= αj, then σ is
weakly fair.

It can be shown by a simple argument using induction, that every weakly fair
path in a model has stuttering equivalent weakly fair path in any safe reduction

On Combining Partial Order Reduction with Fairness Assumptions 91

α 3 α 3

α 4 α 4

1αα 2 α 2α 1

... ...

β

β

β

β

... ...

α 3

α 4 α 4

α 1 α 2

β

β

Fig. 1. Model and its reduction

of the model. For the idea of the proof we refer once again to the construction
of infinite sequence of infinite paths π0,π1,π2,. . . , from the proof of Theorem 1.

As Figure 1 demonstrates, weakly fair behaviour does not have to be preserved
in aggressive reductions. On the left there is a part of the model state space and
on the right there is a part of its reduction state space. Let α transitions be
mutually dependent and transitions β and α4 be visible. Then weakly fair path
β · (α1 · α2)ω in the model has no stuttering equivalent path in the reduction.

3.4 Strongly Fair Paths

Definition 10. Let σ = s1
α1−→ s2

α2−→ . . .
αn−1−→ sn

αn−→ . . . be a path. If for every
β enabled in infinitely many states on σ there exists infinitely many j’s such that
β = αj then σ is strongly fair.

It can be shown by a simple argument using induction, that every strongly fair
path in a model has a stuttering equivalent path in a safe reduction. However,
this path may not be strongly fair as Figure 2 demonstrates.

On the left is a part of model state space and on the right is a part of its
reduction state space. Let α transitions be mutually dependent as well as β
transitions and γ be dependent on all α and β transitions. Further let α1, α2
and γ be visible transitions. For the strongly fair path (α1 · α2 · β1 · β2)ω in
the model state space, there is no stuttering equivalent strongly fair path in the
reduction state space.

Furthermore, Figure 3 demonstrates that a strongly fair behaviour does not
have to be preserved in aggressive reductions. On the left is a part of the model
state space and on the right is a part of its reduction state space. Let α transitions
be mutually dependent and transition β and α3 be visible. Then a strongly fair
path β ·(α1 ·α2)ω in the model has no stuttering equivalent path in the reduction.

92 L. Brim et al.

1α

β 2

β 1

2β
α 2 1α α 2

1α

β 2

2β
α 2 1α α 2

β 1

β 1

β 1

γ

......

... ...

1α

β 1

2β
α 2

1α
2β

α 2

β 1

β 1

2β

β 1

2β

γ

...

... ...

...

Fig. 2. Model and its reduction

1αα 2 α 2α 1

α 1 α 1

α 3 α 3

α 1 α 2

α 1

α 3 α 3

β

β

β

β

... ...

β

β

... ...

Fig. 3. Model and its reduction

4 Applications

In this section, we identify typical fairness assumptions and relate them, one by
one, to results established in the previous section. We try to point out situations
where either aggressive or safe reduction may be of use.

Another issue to be discussed is related to usage of fairness model check-
ing algorithms. Although a reduction may preserve all fair behaviours, it may

On Combining Partial Order Reduction with Fairness Assumptions 93

not preserve them “fairly”. Therefore, a fairness model checking algorithm may
return different results when applied on the model and on the reduction.

Situation 1. Certain subset of actions of modelled system is considered and
each of them is taken infinitely many times.

If at least one of the relevant actions is visible, we can apply an aggressive
reduction as every behaviour of our interest is preserved in such a reduction.
Moreover, the same fairness model checking algorithm can be applied on the
reduction.

Otherwise, aggressive reduction does not guarantee that the desired behav-
iours are preserved in the reduction. On the contrary, safe reductions preserve all
behaviours. Furthermore, as the respective construction of a stuttering equiv-
alent path for this set of conditions does not remove any transition from the
original path, the same fairness model checking algorithm can be applied.

Situation 2. Certain subset of processes of multi-process system is considered
and each of them performs some action infinitely many times.

First, if the subset is equal to the set of all processes, the result for process
fair paths can be applied. Unfortunately, a non-reducible representative of a
process fair path might not be fair. Consider the example on Figure 4. On the
left there is a part of model state space and on the right there is a part of its
reduction state space. Let α transitions be mutually dependent as well as β
transitions. Further let β1, β2 and α4 be visible transitions. Finally, let {α1, β1}
be the fairness assumption.

The path (β1 · β2 · α1 · α2)ω in the model state space satisfies the assumption.
However, there is no stuttering equivalent path in the reduction state space,
which would satisfy the assumption. Thus, one cannot use the same fairness

α 3 α 3 α 3

α 4 α 4 α 4 α 4

1αα 1 α 1

α 2α 2α 2

β 1

2β

β 2

β 2

β 1

β 2

β 1

β 1

β 2

β 2

β 1

β 1

......

Fig. 4. Model and its reduction

94 L. Brim et al.

model checking algorithm both for a model M and its aggressive reduction MR

and the equivalence M |=F ϕ ⇔ MR |=F ϕ does not hold in general.
Nevertheless, this approach can be used for checking validity of ϕ as MR |=

ϕ ⇒ M |=F ϕ. Actually, we find this result to be quite interesting, as checking
validity is generally more “space and time demanding” task than checking in-
validity—which can be partially dealt with using approximation and stochastic
techniques. Again, a safe reduction preserves all behaviours. Moreover, the re-
spective construction of a stutter equivalent path in a safe reduction does not
remove any transition from the original path and thus the original fairness model
checking algorithm can be used as well.

Alternatively, if we somehow guarantee that every time a process performs
infinitely many actions, it performs infinitely many visible actions as well, then
all desired behaviours are preserved even by an aggressive reduction and the same
fairness model checking algorithm can be applied. However, the more visible
actions there are, the smaller the reduction generally is.

Situation 3. Only weakly fair behaviours are considered.

As a weakly fair path might not have a stuttering equivalent path in an
aggressive reduction, we discuss this assumption in the context of safe reductions.

These reductions preserve all behaviours and as the respective construction
of a stuttering equivalent paths does not remove any transition from the original
path, the original fairness model checking algorithm can be applied.

Situation 4. Only strongly fair behaviours are considered.

In general aggressive reductions do not preserve strongly fair behaviours. On
the contrary, safe reductions preserve all strongly fair behaviours, but the re-
sulting stuttering equivalent paths do not have to be strongly fair. Therefore the
same fairness model checking algorithm cannot be applied.

In order to use the same fairness model checking algorithm the dependency
relation can be modified as described in [8]. Alternatively, any model checking
algorithm can be used for checking the validity of ϕ as MR |= ϕ ⇒ M |=F ϕ.

Finally, if the model represents a multi-process system where every process
has always enabled at least one action, strong fairness implies process fairness
and aggressive reductions can be used for checking validity.

5 Conclusions

The paper explores a combination of two concepts: partial order reduction and
fairness, both used in the context of LTL model checking. While the first one is
essential in alleviating the state space explosion, the second one simplifies the
modelling process.

For the partial order reduction we consider a well-known safe variant together
with a new variant represented by condition C4 which is supposed to replace
condition C3. It allows for better reduction in general and yet ensures that

On Combining Partial Order Reduction with Fairness Assumptions 95

certain subset of behaviours is preserved. We have defined safe reduction as
any reduction satisfying conditions C0 through C3 and we have used the new
condition to define aggressive reduction. Then we have defined four behavioural
classes motivated by typical fairness assumptions. The paper gives a detailed
analysis of fairness concepts and demonstrates how they are affected by safe and
aggressive reductions.

For several reductions we have encountered the following problem. Even
though fair behaviour is preserved by the reduction it does not have an equivalent
fair behaviour representative in the reduced model. This disables the possibility
to use the same fairness model checking algorithm. On the contrary, as all fair
behaviours in a model M have a stuttering equivalent behaviour in a reduction
MR and MR |= ϕ =⇒ M |=F ϕ, we can actually check formula validity under
fairness assumptions. Whether our results can be extended to checking invalidity
is left as an open problem.

References

1. D. Bosnacki. Partial order reduction in presence of rendez-vous communications
with unless constructs and weak fairness. In Theoretical and Practical Aspects of
SPIN Model Checking (SPIN 1999), volume 1680 of Lecture Notes in Computer
Science, pages 40–56. Springer, 1999.

2. L. Brim, I. Černá, P. Moravec, and J. Šimša. Distributed Partial Order Reduction.
Electronic Notes in Theoretical Computer Science, 128:63–74, April 2005.

3. E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT Press,
Cambridge, Massachusetts, 1999.

4. N. Francez. Fairness. Texts and Monographs in Computer Science. Springer, 1986.
5. P. Godefroid and D. Pirottin. Refining dependencies improves partial-order veri-

fication methods. In Proc. of the 5th Conference on Computer-Aided Verification,
volume 697 of LNCS, pages 438–449. Springer, 1992.

6. G.J. Holzmann, P. Godefroid, and D. Pirottin. Coverage preserving reduction
strategies for reachability analysis. In Proc. 12th Int. Conf on Protocol Specifica-
tion, Testing, and Verification, INWG/IFIP, Orlando, Fl., June 1992.

7. T. Latvala and K. Heljanko. Coping with strong fairness. Fundamenta Informati-
cae, pages 175–193, 2000.

8. D. Peled. All from one, one from all: on model checking using representatives. In
Proceedings of the 5th International Conference on Computer Aided Verification,
Greece, number 697 in Lecture Notes in Computer Science, pages 409–423, Berlin-
Heidelberg-New York, 1993. Springer.

9. D. Peled. Combining partial order reductions with on-the-fly model-checking. In
Proceedings of CAV’94, pages 377–390. Springer Verlag, LNCS 818, 1994.

10. D. Peled and T. Wilke. Stutter-invariant temporal properties are expressible with-
out the nexttime operator. Information Processing Letters, 1997.

11. A. Valmari. A stubborn attack on state explosion. In Proc. of the 2nd Workshop
on Computer-Aided Verification, volume 531 of LNCS, pages 156–165. Springer,
1991.

96 L. Brim et al.

A Appendix

Proof of Theorems 4 and 6 follow the same direction. Thus, we present it just
once and we distinguish between different context only when necessary.

Our goal is the following. Given a path σ in M and a reduction M ′ =
(M, ample) satisfying conditions C0 through C2 and C4, show that there is
a path in M ′ stuttering equivalent to σ.

First, we inductively describe an infinite sequence of paths π0, π1, π2, . . . ,
where σ = π0 and for every i, πi = ηi ◦ θi is a path in M , ηi is a path in M ′,
and | ηi |= i.

Basic step. Let η0 = ε, θ0 = σ.
Inductive step. Let s0 = last(ηi) = first(θi), θi = s0

α1→ s1
α2→ s2 . . .

There are two possibilities:
A If α1 ∈ ample(s0) then ηi+1 = ηi ◦ (s0

α1→ s1), θi+1 = s1
α2→ s2 . . .

B The case α1 /∈ ample(s0) divides into two subcases:
B1 There is k such that αk ∈ ample(s0) and (αj , αk) are independent

for all 1 ≤ j < k. We choose the smallest possible k. Then ηi+1 =
ηi ◦ (s0

αk→ αk(s0)). As transitions αj are independent, αk(s0)
α1→

αk(s1)
α2→ αk(s2) . . . is a path in M . Let θi+1 = s0

αk→ αk(s0)
α1→

αk(s1)
α2→ . . .

αk−1→ αk(sk)
αk+1→ sk+2

αk+2→ . . .
B2 αk /∈ ample(s0) for any k. Then from the condition C1 all transitions

in ample(s0) are independent on all transitions in θi. Let ξ be the
shortest path in M ′ from s0 to a fully expanded state (the existence of
such a path is guaranteed by C4) and let β be the first transition of ξ.

Then ηi+1 = ηi ◦ (s0
β→ β(s0)), θi+1 = β(s0)

α1→ β(s1)
α2→ β(s2) . . .

Cases B1 and B2 cover all possibilities conforming to C1.

Notice that a simple argument based on the definition of ¬D yields that the
rule B1 cannot be applied after the rule B2 without the rule A being applied
in the meantime. This fact is implicitly employed in proof of Lemma 7.

Next, we characterise properties of the path η and then we prove the stuttering
equivalence between η and σ.

Properties of η

Lemma 4. For every i, πi = ηi ◦ θi is a path in M , ηi is a path in M ′, and
| ηi |= i.

Proof: By induction. Induction basis for i = 0 holds trivially. In induction
step, we first prove that πi is a path in M . It obviously holds for the case
A. In the case B1, (αj , αk) are independent, for all j < k. Hence there is a
path ξ = s0

αk→ αk(s0)
α1→ αk(s1)

α2→ . . .
αk−1→ αk(sk)

αk+1→ sk+2
αk+2→ . . . in M ,

where αk is moved before α1α2α3 . . . αk−1. Note that αk(sk) = sk+1. Therefore,
αk(sk)

αk+1→ sk+2 is the same as sk+1
αk+1→ sk+2. In the case B2 we execute a

transition which is independent on all transitions in θi−1, hence θi is obviously a
path in M . Certainly ηi is a path in M ′ and | ηi |= i in all cases, as we append
to ηi−1 exactly one transition from ample(last(ηi−1)). �

On Combining Partial Order Reduction with Fairness Assumptions 97

Lemma 5. Let η = limi→∞ ηi. Then η is a path in M ′.

Proof: By induction to i. �

Stuttering equivalence

Lemma 6. The following holds for all i, j such that j ≥ i ≥ 0.

1. πi ∼st πj .
2. vis(πi) = vis(πj).
3. Let ξi be a prefix of πi and ξj be a prefix of πj such that vis(ξi) = vis(ξj).

Then L(last(ξi)) = L(last(ξj)).

Proof: It is sufficient to consider the case where j = i + 1. Consider three ways
of constructing πi+1 from πi. In case A, πi+1 = πi and the statement holds
trivially.

In case B1, πi+1 is obtained from πi by executing a invisible transition αk

in πi+1 earlier than it is executed in πi. In this case, we replace the sequence
s0

α1→ s1
α2→ . . .

αk−1→ sk−1
αk→ sk by s0

αk→ αk(s0)
α1→ αk(s1)

α2→ . . .
αk−1→ αk(sk−1).

Because αk is invisible, corresponding states have the same label, that is, for
each 0 < l ≤ k, L(sl) = L(αk(sl)). Also, the order of the visible transitions
remains unchanged. Parts 1, 2, and 3 follow immediately.

Finally, consider case B2, where the difference between πi and πi+1 is that
πi+1 includes an additional invisible transition β. Thus, we replace some suffix

s0
α1→ s1

α2→ . . . by s0
β→ β(s0))

α1→ β(s1)
α2→ So, L(sl) = L(β(sl)) for l ≥ 0.

Again, the order of visible transitions remains unchanged and parts 1, 2, and 3
follow immediately. �

In the following lemma we have to differentiate between individual cases.

Lemma 7. During the construction of η, the case A is chosen infinitely often.

Proof: for paths with infinitely many visible transitions
First, we prove that for every i, θi does not contain any scattered cycle.
By induction to i. For θ0 = σ the statement holds trivially. If θi is constructed

applying A or B2 it does not contain any cycle as θi−1 does not contain any.
In case of B1, a presence of a scattered cycle in θi would imply a presence of a
scattered cycle in θi−1

Now, let us assume that there is an index j such that during the construction
of πj , πj+1, . . . only the rule B is applied. Then either B1 or B2 is applied
infinitely many times.

In case rule B1 is applied infinitely many times there is an infinite sequence
of transitions which are added to the prefix ηj−1. These transitions are invisible
and independent on all other transitions in θj . From finiteness of the set of states
we have that some of the considered transitions form a cycle, which is moreover
a scattered cycle in θj . Hence a contradiction.

This gives us an existence of an index k ≥ j such that for the construction
of πk, πk+1, . . . only the rule B2 is applied. But this is a contradiction to the

98 L. Brim et al.

fact that in B2 we always choose a transition from the shortest path to a fully
expanded state. �

Proof: for process fair paths
First, we prove that for every i, θi is non-reducible.
By induction to i. For θ0 = σ the statement holds trivially. If θi is constructed

applying A, B1 or B2 it is non-reducible as θi−1 is.
Now, let us assume that there is an index j such that during the construction

of πj , πj+1, . . . only the rule B is applied. Then either B1 or B2 is applied
infinitely many times.

In case rule B1 is applied infinitely many times there is an infinite sequence
of transitions which are added to the prefix ηj−1. These transitions are invisi-
ble and independent on all other transitions in θj . Let P be the process taking
α transition on θj . If | proj({P}, θj) |= ∞, then θj is 0-reducible and we get
a contradiction. Therefore | proj({P}, θj) | must be finite and θj is not re-
ducible for any k. Moreover, σ is a result of process fair path transformation
described in Lemma 3. The original process fair path contained infinitely many
P ’s transitions. Thus, during the construction of σ, P ’s transitions were removed
because of some k-reduction. But in that particular moment of the construction
a j-reduction removing transitions selected by B1 rule would be possible too.
Finally, as j is strictly smaller than k, this is a contradiction as well.

This gives us an existence of an index k ≥ j such that for the construction
of πk, πk+1, . . . only the rule B2 is applied. But this is a contradiction to the
fact that in B2 we always choose a transition from the shortest path to a fully
expanded state. �

Lemma 8. Let α be the first transition of θi. Then there exists j > i: α is the
last transition of ηj and ∀k : i ≤ k < j: α is the first transition of θk.

Proof: The rules B1 and B2 leave the first transition α of θi unchanged, the
rule A shifts the transition α to ηi. Thus it is sufficient to prove that during
the construction of η, the rule A is applied infinitely often. This follows from
Lemma 7. �

Lemma 9. Let δ be the first visible transition on θi, prefix δ(θi) be the maximal
prefix of trans(θi) that does not contain δ. Then either δ is the first transition of
θi and the last transition of ηi+1 or δ is the first visible transition of θi+1, the last
transition of ηi+1 is invisible and prefixδ(θi+1) is a subsequence of prefixδ(θi).

Proof:

– If θi+1 is constructed according to A, then δ is the last transition of ηi+1.
– If B1 is applied then an invisible transition αk from θi is appended to ηi

to form ηi+1 and δ is still the first visible transition of θi+1. The prefix
prefixδ(θi) is either unchanged or shortened by the transition αk.

– Otherwise an invisible transition β is appended to ηi to form ηi+1 and
prefixδ(θi+1) = prefixδ(θi). �

On Combining Partial Order Reduction with Fairness Assumptions 99

Lemma 10. Let v be a prefix of vis(σ). Then there exists a path ηi such that
v = vis(ηi).

Proof: By induction to the length of v. For the basic step | v |= 0 the statement
holds trivially. For the induction step we must prove that if v · δ is a prefix of
vis(σ) and there is a path ηi such that vis(ηi) = v, then there is a path ηj with
j > i such that vis(ηi+1) = v ·δ. Thus, we need to show that δ will be eventually
added to ηj for some j > i, and that no other visible transition will be added
to ηk for i < k < j. According to the case A in the construction, we may add
a visible transition to the end of ηk to form ηk+1 only if it appears as the first
transition of θk. Lemma 9 shows that δ remains the first visible transition in
successive paths θk after θi unless it is being added to some ηj . Moreover, the
sequence of transitions before δ can only shrink. Lemma 8 shows that the first
transition in each θk is eventually removed and added to the end of some ηl for
l > k. Thus, δ as well is eventually added to some sequence ηj . �

Proof: of Theorems 4 and 6
We will show that the described path η = limi→∞ ηi is stutter equivalent to

the original path σ.
First note that vis(σ) = vis(η). It follows from Lemma 10 that for every

prefix of σ there is a prefix of η with the same sequence of visible transitions.
The opposite follows from Lemma 6.

Next we construct two infinite sequences of indexes 0 = i0 < i1 < . . . and
0 = j0 < j1 < . . . that define corresponding stuttering blocks of σ and η, as
required in Definition 3. For every natural n, let in be the length of the smallest
prefix ξin of σ that contains exactly n visible transitions. Let jn be the length of
the smallest prefix ηjn of η that contains the same sequence of visible transitions
as ξin . Recall that ηjn is a prefix of πjn . Then by Lemma 6, L(sin) = L(rjn).
By the definition of visible transitions we also know that if n > 0, for in−1 ≤
k < in − 1, L(sk) = L(sin−1). This is because in−1 is the length of the smallest
prefix ξin−1 of σ that contains exactly n − 1 visible transitions. Thus, there is
no visible transition between in−1 and in − 1. Similarly, for jn−1 ≤ l < jn − 1,
L(rl) = L(rjn−1). �

Test Coverage for Loose Timing Annotations

C. Helmstetter1,2, F. Maraninchi1, and L. Maillet-Contoz2

1 Verimag, Centre équation - 2, avenue de Vignate, 38610 GIÈRES, France
2 STMicroelectronics, HPC, System Platform Group,

850 rue Jean Monnet, 38920 CROLLES, France

Abstract. The design flow of systems-on-a-chip (SoCs) identifies sev-
eral abstraction levels higher than the Register-Transfer-Level that con-
stitutes the input of the synthesis tools. These levels are called transac-
tional, because systems are described as asynchronous parallel activities
communicating by transactions. The most abstract transactional model
is purely functional. The following model in the design flow is annotated
with some timing information on the duration of the main components,
that serves for performance evaluation. The timing annotations are in-
cluded as special wait instructions, but since the timing information is
imprecise, it should not result in additional synchronizations. We would
like the functional properties of the system to be independent of the
precise timing. In previous work [1], we showed how to adapt dynamic
partial order reduction techniques to functional models of SoCs written in
SystemC, in order to guarantee that functional properties are scheduler-
independent. In this paper, we extend this work to timed systems with
bounded delays, in order to guarantee timing-independence. The idea is
to generate a set of executions that covers small variations of the timing
annotations.

1 Introduction

The Register Transfer Level (RTL) used to be the entry point of the design
flow of hardware systems, but the simulation environments for such models do
not scale up well. Developing and debugging embedded software for these low
level models before getting the physical chip from the factory is no longer pos-
sible at a reasonable cost. New abstraction levels, such as the Transaction Level
Model (TLM) [2], have emerged. The TLM approach uses a component-based
approach, in which hardware blocks are modules communicating with so-called
transactions. The TLM models are used for early development of the embedded
software, because the high level of abstraction allows a fast simulation. SystemC
is a C++ library used for the description of SoCs at different levels of abstrac-
tion, from cycle accurate to purely functional models. It comes with a simulation
environment, and is becoming a de facto standard.

As TLM models appear first in the design flow, they become reference models
for SoCs. In particular, the software that is validated with the TLM model
should remain unchanged in the final SoC. The TLM abstraction level comes
with new synchronization mechanisms that often make existing methods for RTL
validation inapplicable. In particular, recent TLM models do not have clocks

L. Brim et al. (Eds.): FMICS and PDMC 2006, LNCS 4346, pp. 100–115, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Test Coverage for Loose Timing Annotations 101

at all. In this paper, we concentrate on testing methods for SoCs written in
SystemC.

The current industrial methodology for testing SoCs in SystemC is the fol-
lowing. First, we identify what we want to test (the System Under Test, or
SUT), which is usually an open system. We make it closed by plugging in-
put generators and a result checker, called oracle. SCV [3] is a testing tool
for SystemC. It helps in writing input generators by providing C++ macros
for expressing constraints: SCV_CONSTRAINT((addr()>10 && addr()< 50)||
(addr()>=2 && addr()<= 5)); is an SCV constraint for which the SCV solver
will generate random values of addr satisfying it. In most existing approaches,
the SUT writes in memory, and the oracle consists in comparing the final state
of the SUT memory to a reference memory. As usual, the main difficulty is to get
a good quality test suite, i.e., a test suite that does not omit useful tests (that
may reveal a bug) and at the same time avoids redundant tests (that can expose
the same bugs) as much as possible. Specman [4] is a commercial alternative of
SCV which uses the e language for describing the constraints.

1.1 Partial Order Reduction Techniques for Scheduler-Independence

In [1], we have presented an automatic technique for the exploration of schedul-
ings in the case of SystemC. It is an adaptation and application of the method
for dynamic partial order reduction presented in [5]. We assume that the choice
of relevant data for the testing phase has already been done: we consider a SoC
written in SystemC, including the data generator and the oracle. For each of
the test data, the system has to be run, with a particular implementation of
the scheduler. Since the specification of the scheduler is non-deterministic, this
means that the execution of tests may hide bugs that would have appeared with
another valid implementation of the scheduler. Moreover, the scheduling is due
to the simulation engine only, and is unlikely to represent anything concrete on
the final SoC where we have true parallelism. We would like the SoC description,
and in particular the embedded software, to be scheduler-independent. Exploring
alternative schedulings is a way of validating this property.

Our tool is based on forking executions: we start executing the system for
a given data-input, and as soon as we suspect that several scheduler choices
could cause distinct behaviors, we fork the execution. We use an approximate
criterion to decide whether to fork executions. The idea is to look at the actions
performed by the processes, in order to guess whether a change in their order (as
what would be produced by distinct scheduler choices) could affect the final state.
This criterion is approximate in the following sense: we may distinguish between
executions that in fact lead to the same final state; but we cannot consider
as equivalent two executions that lead to distinct final states. The result is a
complete, but not always minimal, exploration of the scheduling choices for the
whole data-input.

1.2 The Hierarchy of TLM Models

There are several levels of transactional models. The more abstract transactional
model is purely functional. The following model in the design flow is enriched

102 C. Helmstetter, F. Maraninchi, and L. Maillet-Contoz

with some timing information on the duration of the main components, that may
serve for performance evaluation during simulation. This timing information is
quite imprecise: it may be given by previous measures on existing IPs (IP stands
for “Intellectual Property”; an IP block is a reusable hardware component). For
instance, we may have approximate values for the time it takes to write an
image in memory. Note that this kind of loose timing is still very far from the
precision of cycle-accurate models, and this is why timed transactional models
are interesting: they simulate much faster than cycle-accurate models, but they
can already give some hints on the performance of the SoC.

Practically, a SystemC description annotated by timings uses a special instruc-
tion wait (duration). The interpretation of this instruction by the simulation
engine simulates the amount of time taken by the components. When executing
such a SoC description enriched with timings, the SystemC execution engine
has to take precise values of the timings. There is a risk of producing spurious
synchronizations by interpreting the timings too strictly. In other words, the
embedded software will be more robust if it works correctly for slightly distinct
timings. It is therefore useful to explore alternative timings during testing. It
can be done by choosing a timing randomly within an interval, at execution
time. Existing industrial approaches use a new instruction lwait (duration,
delta), telling the execution engine to draw a value in the interval [duration
- delta, duration + delta]. If the instruction appears within a loop, a new
value is drawn for each execution of the instruction. However, this slows the
simulations without guaranteeing that interesting cases are explored.

1.3 Contributions and Structure of the Paper

Ensuring timing-independence can also be done in a more systematic way, by
generating exactly the set of timings that yield different behaviors of the SoC.
In this paper, we generalize the approach of [1] in order to generate alternative
schedulings and alternative timings for a given data input. The result is of the
same kind: we obtain a complete but not always minimal set of alternative
executions, for a given data input. The idea is that, if the software works well for
all these alternative executions, it is more robust. This is our notion of scheduler
and timing independence.

The paper is structured as follows: section 2 presents an overview of SystemC,
and some examples for illustrating the influence of the scheduling and the pres-
ence of loose timings. Section 3 recalls the results of [1] and section 4 describes
our new algorithm for models with loose timings. We present our implementa-
tion and its evaluation in section 5, related work in section 6, and we conclude
with section 7.

2 SystemC, Scheduling Problems, and Loose Timings

A TLM model written in SystemC is based on an architecture, i.e. a set of
parallel components and connections between them. Each component has typed
connection ports, and its behavior is given by a set of communicating processes

Test Coverage for Loose Timing Annotations 103

that can be programmed in full C++. For managing processes, SystemC provides
a scheduler, and several synchronization mechanisms: the low-level events, the
synchronous signals that trigger an event when their value changes, and higher
level mechanisms. The static architecture is built by executing the so-called
elaboration phase (ELAB), which creates components and connections. Then
the scheduler starts running the processes of the components, according to the
informal automaton of figure 1-(a). Simulations of a SystemC model look like
sequences of evaluation phases (EV). Signals update phase (UP) and time elapse
(TE) separate them (see figure 1-(b)).

E
V

U
P

E
V

U
P

T
E

E
V

E
L

A
B

−
c
y
c
le

δ
tim

eEND

no eligible process

no eligible process

no eligible process

ELAB

EV

UP

TE

elect a process

and run it

advance

simulation time

signal values

update

platform

build the

eligible process

eligible process

eligible process

t=0

t=t+d

(b)(a)

Fig. 1. (a) Automaton of the SystemC Scheduler; (b) Diagram of an execution

2.1 The SystemC Scheduler

The SystemC Language Reference Manual [6] describes the scheduler algorithm.
At the end of the elaboration phase ELAB, some processes are eligible, some
others are waiting. During the evaluation phase EV, eligible processes are run in
an unspecified order, non-preemptively, and explicitly suspend themselves when
reaching a wait instruction. A process may wait for some time to elapse, or for an
event to occur. While running, it may access shared variables and signals, enable
other processes by notifying events, or program delayed notifications. An eligible
process cannot become “waiting” without being executed. When there is no more
eligible process, signals values are updated (UP) and δ-delayed notifications are
triggered, which can wake up processes. A δ-cycle is the duration between two
update phases. Since there is no interaction between processes during the update
phase, the order of the updates has no consequence. When there is still no eligible
process at the end of an update phase, the scheduler lets time elapse (TE), and
awakes the processes that have the earliest deadline. A notification of a SystemC
event can be immediate, δ-delayed or time-delayed. Processes can thus be become

104 C. Helmstetter, F. Maraninchi, and L. Maillet-Contoz

eligible at any of the three steps EV, UP or TE. Besides events, processes can
also communicate using shared variables, and higher level structures built with
these two primitives.

2.2 Examples with Fixed Durations

To illustrate possible consequences of scheduling choices, let us introduce two
small examples of SystemC programs. Figure 2 shows the example foo made of
two processes P and Q. The example foo has three possible executions depending
on the scheduling, leading to very different results. We describe them below, with
the following notation: an execution is denoted by a sequence of process names
(to show which process is elected) and strings of the form “[t +d−→D]” that serve
to show the TE phase of the scheduler; d represents the duration elapsed and D
the new global date (these strings can be deduced from other information, but
we include them for readability reasons). The three executions are:

– P;Q;P;[t +20−→20];Q;P: this scheduling leads to the printing of “Ok”.
– P;Q;P;[t +20−→20];P;Q: the string “Ko” is printed. It is a typical case of data-race:

x is tested before it has been set to 1.
– Q;P;[t +20−→ 20];Q: the execution ends after three steps only. The “wait(e)”

statement has been executed before any notification of event e. Since events
are not persistent in SystemC, process P has not been woken up. It is a
particular form of deadlock.

It is useful to test all executions of the foo example because they lead to
different final states. But consider now the foobar example defined in figure 3.
foobar has 30 possible executions, but only 3 different final states. 12 executions
are equivalent to “R;P;Q;P;[t +20−→ 20];R;Q;P”, 12 to “R;P;Q;P;[t +20−→ 20];R;P;Q” and 6
to “R;Q;P;[t +20−→20];R;Q”. Our method for scheduler-independence would generate
only 3 executions, one for each final state (or equivalence class).

void top::P() {
wait(e);
wait(20);
if (x) cout << "Ok\n";
else cout << "Ko\n";}

void top::Q() {
e.notify();
x = 0;
wait(20);
x = 1;}

Fig. 2. The foo example

void top::P()
as in example foo

void top::Q()
as in example foo

void top::R() {
wait(20);

}

Fig. 3. The foobar example

Test Coverage for Loose Timing Annotations 105

void P() {
lwait(3,d1); // t1
wait(e);
lwait(40,d2); // t2
if (x) cout << "Ok\n";
else cout << "Ko\n";}

void Q() {
lwait(6,d3); // t3
e.notify();
x = 0;
lwait(24,d4); // t4
x = 1;}

Fig. 4. The foochi example

2.3 Examples with Loose Durations

Figure 4 presents a new version foochi of the foo example, with loose durations.
To execute this example, we must choose a value for t1 between 3-d1 and 3+d1,
a value for t2 between 40-d2 and 40+d2, etc.

If d1 = d2 = d3 = d4 = 0, then all delays are fixed and there are only two
valid and equivalent executions (the index on process names is used to identify
the occurrence): P1; Q1 or Q1; P1 followed by [t +3−→ 3]; P2; [t

+3−→ 6]; Q2; P3; [t
+24−→

30]; Q3; [t
+16−→ 46]; P4. P1 and Q1 occur at T = 0ns, P2 at T = 3ns, Q2 and P3

at T = 6ns. Next Q3 runs at T = 24 + 6 = 30ns. At last, the string “Ok” is
displayed by P4 at T = 6 + 40 = 46ns.

Giving non-null values to the di allows to test the robustness of the program.
If we take d1 = d2 = d3 = d4 = 2, then it is possible to permute the wait and
the notification of the SystemC event e: we choose t1 = 5ns and t3 = 4ns. With
theses values, it is still impossible to permute Q3 and P4. If we increase d2 (resp.
d4) to 10 (resp. 6), then Q3 and P4 may occur at the same time T = 6+30 = 36ns
(30 = 24 + 6 = 40 − 10). Next, playing with the indeterminism of the scheduler
allows to execute P4 before Q3. We have found the two errors of the foo example
again. The algorithm we describe in this paper generates timings and schedulings
automatically, in order to find the executions that lead to these errors.

3 Relationships for Partial Order Reduction Techniques

In the whole section, the SUT is a SystemC program. We suppose that we have
an independent tool for generating test cases that only contain the data. We call
SUTD the object made of the SUT plus one particular test data. We have to
generate a relevant set of schedulings and timings for this data.

3.1 Representation of the SUTD

When data is fixed, a SUT execution is entirely defined by its scheduling and
its concrete timing. A scheduling is entirely defined by an element of P∗ where
P is the set of process identifiers. Not all the elements of P∗ represent possible
schedulings of the SUTD (because of the synchronization and timing constraints
between processes). With each lwait(D,d) instruction present in the source
code, we associate an identifier ω ∈ Ω; we note B(ω) (B stands for “Bounds”)
the interval [D−d, D+d] and #u(ω) the number of times an execution of ω occurs

106 C. Helmstetter, F. Maraninchi, and L. Maillet-Contoz

in a scheduling u. A timing T is a function from pairs (ω, n) ∈ Ω × [1..#u(ω)] to
durations d. T (ω, n) = d means that we wait for a duration d when we execute
the instruction identified by ω for the n-th time. The timing T is valid if and
only if ∀(ω, n) ∈ Ω × [1..#u(ω)], T (ω, n) ∈ B(ω).

We call transition one execution of one process in a particular scheduling.
Each transition of a scheduling is identified by its process identifier indexed by
the occurrence number of this process identifier in the scheduling. For example,
in the scheduling pqp there are 3 transitions: p1, q1 and p2, in that order. For a
particular execution with a specified timing, the date of a transition is the value
of the variable t of the scheduler (figure 1-(a)) when the transition occurs.

We will use letters p, q, r to denote processes, pi, qj , . . . to denote transitions
and u, v, . . . to denote sub-sequences of schedulings. Indexes will be omitted when
obvious by context.

3.2 Relationships

We recall some standard notions from the literature on partial order reduction
techniques, that we will use for both scheduling and timing generation.

Dependent and Equivalent Transitions. The theory of partial order re-
duction relies on the definition of dependent transitions [7]. Let u be a valid
scheduling, two transitions pi and qj are independent if not any of them has
been enabled by the other, and if permuting them gives a new valid scheduling
which still leads to the same final state. In all other cases, we say that pi and qj

are dependent. Note that it is correct because, in SystemC, an enabled process
cannot be disabled without being executed. We note D the set of all pairs of
dependent transitions.

Two schedulings u and v are equivalent, noted u ≡ v, if and only if we can
transform one into the other by successive permutations of independent transi-
tions. As a consequence of the definition of the dependency relationship D, two
equivalent schedulings lead to the same final state. In our testing approach for
SystemC, we include the output checker into the SUT, which means that the
detection of an error corresponds to a particular final state. Hence generating
one scheduling of each equivalence class allows to detect all errors.

Causally Ordered and Permutable Transitions. Consider a scheduling u:
we note pi <u qj if the transition pi (the i-th execution of process p) occurs
before the transition qj (the j-th execution of process q) in u. We note pi ≺u qj

and say that pi and qj are causally ordered , if we have pi <v qj for any schedul-
ing v equivalent to u. In other words, pi and qj are causally ordered if we cannot
permute them without permuting dependent transitions. Unlike the causal re-
lationship, the permutability relationship is not a partial order. Two transitions
are permutable if they can be permuted without permuting other dependent
transitions. We note P the set of permutable transitions. The transitions pi and
qj are permutable in the valid scheduling u = u1piu2qju3, noted (pi, qj) ∈ P ,
if and only if: ∃v1, v2 such that u1v1piqjv2 ≡ u1piu2qju3 and u1v1qj is a valid
scheduling.

Test Coverage for Loose Timing Annotations 107

(b) foochi with scheduling p1q1p2q2p3q3p4

and timing: t1 �→ 3, t2 �→ 40, t3 �→ 6, t4 �→ 24

t=0
P

Q
time

t=3 t=6 t=30 t=46

t1

(a) foo with scheduling p1q1p2q2p3

t3 t4

t2

e

e

x
p1 p2 p3

q1 q2

p1 p2 p3

q1 q2

p4

q3

e

e x

t=20t=0

time

P

Q

Fig. 5. Dynamic Dependency Graphs

Dynamic Dependency Graph (DDG). The DDG represents the synchro-
nizations of a particular scheduling. Fig. 5-(a) represents the scheduling P;Q;P;Q;P,
denoted p1q1p2q2p3, of the foo program of Fig. 2, and Fig. 5-(b) represents an
execution of foochi. Each horizontal line is a process. Time elapses are repre-
sented by plain vertical lines if all delays are fixed, otherwise by dotted vertical
lines. The curved lines represent loose durations. Each box is a process transition.
Arrows between boxes indicate that the two transitions are causally ordered; we
draw dashed arrows if the transitions are permutable, plain arrows otherwise.
We may move some transitions on the horizontal axis, remaining among the valid
and equivalent schedulings, provided we do not permute two boxes linked by an
arrow, nor move a transition through a plain vertical line.

Computation of the Relationships. In practice, we can only compute an approx-
imation of the dependency relationship: two independent transitions may be
considered as dependent, but two dependent transitions are always considered
as dependent. Consequently, the only risk is to generate useless schedulings.

We compute the dependency relationship for each new generated scheduling.
Doing multiple dynamic computations is more precise than one static computa-
tion. For example, for a code like Tab[h]=42 we know exactly which element of
Tab is accessed, and whether the new value is different from the old one.

Two transitions are dependent if some reasons prevent their permutation, or
else if they contain non-commutative actions on the same shared object (for
example: wait(e) and notify(e), or x=0 and x=x+1). For the causal order and
the relationship P , we have to compute a transitive closure. The principles of
these algorithms are available in [5], or in [1] for SystemC-specific concerns. Here,

108 C. Helmstetter, F. Maraninchi, and L. Maillet-Contoz

we consider that D and P are computed without taking temporal constraints
into account.

3.3 Generation of Schedulings

In this section, we rewrite the algorithm of [1] defined for the automatic gener-
ation of schedulings, in such a way that the generalization to timing generation
becomes possible. The algorithm of [1] works on any SUTD with only fixed
delays. First, we execute the SUTD with a random scheduling. Next, for each
executed scheduling, we generate a new scheduling for each pair of dependent
and permutable transitions. Figure 6 gives a definition of the main algorithm.

GS(constraint set C): //initial call: GS(∅)
execute the SUTD according to C;
u= scheduling of the above execution;
for all transitions pi and qj of u with pi <u qj such that:

(pi, qj) ∈ D ∩ P and
date(pi) = date(qj) and //temporal constraints are treated here (*)
∃v, v |= C ∧ qj <v pi do

GS(C ∪ “qj < pi”); //constraint to be satisfied by new schedulings
C = C ∪ “pi < qj”; //constraint satisfied by the current scheduling

Fig. 6. Main algorithm for the generation of schedulings

We generate each scheduling in two steps. First, we build a set of schedul-
ing constraints of the form “pi < qj”. A constraint “pi < qj” is satisfied by a
scheduling u if and only if the j-th occurrence of q does not occur before the
i-th occurrence of p (formally: qj ∈ u ⇒ pi ∈ u ∧ pi <u qj). The scheduling u
satisfies a set of constraints C (noted u |= C) if and only if it satisfies all con-
straints of C. Next, we give this constraint set to a patched scheduler that elects
processes according to the given constraints. Each new generated scheduling is
more constrained than its father scheduling. Consequently, there are fewer and
fewer new schedulings at each iteration. When the checker does not generate any
new scheduling, we have a complete test suite. If we execute this algorithm until
completion, we get at least one scheduling for each equivalence class.

Checker

q2 modify(x)
p3 read(x)

SUTD.exe

p2

p1

q1

wait(e)
notify(e), modify(x)

{p1 < q1; p3 < q2}
{q1 < p1}

Fig. 7. First iteration of the analysis for the foo example

Test Coverage for Loose Timing Annotations 109

Figure 7 describes the first iteration of our tool on the foo example. The
first execution activates processes p and q in the order p1q1p2q2p3. The checker
generates two new sets of constraints. One to permute p1 and q1 (unordered
accesses to event e, first dashed arrow of figure 5-(a)) and the other to permute
p3 and q2 (unordered accesses to shared variable x, second dashed arrow of
figure 5-(a)). Following iterations do not generate other schedulings and we get
at last 3 schedulings.

4 Conjoint Generation of Schedulings and Timings

4.1 The SystemC Models We Consider

First, we need to make the context of our work more precise. In this work, we
restrict to SystemC programs whose executions have only one δ-cycle between
two “time-elapse” phases. Indeed, the semantics of δ-cycle delays for abstract
models with loose durations is unclear and such delays should not be used in
timed TLM models. Moreover, for simplicity reasons, we do not consider delayed
notifications. Finally, we consider that the global date (variable t of Figure 1-(a))
is private and cannot be accessed by processes. This means that the processes
cannot use the timing annotations to perform functional effects. This is consis-
tent with the context of several TLM models, where the timing annotations are
added to a functional model, for performance evaluation only. We discuss this
topic in the conclusion.

4.2 Main Ideas

With examples that use only fixed delays, two transitions cannot be permuted if
they occur at different dates. This is no longer true for SUTDs with loose delays:
an alternative concrete timing may allow or force the permutation of some tran-
sitions. Now, for all pairs of dependent transitions such that their permutation
is not prevented by explicit synchronizations, we have to determine whether it
exists a concrete timing which allows their permutation. If such timings exist,
we have to choose one and to re-execute the SUTD with it. In the algorithm
presented in section 3.3 above, it is the only point which has to be rewritten for
the generation of timings; the rest is identical.

For an execution of the SUTD and a set of scheduling constraints, we compute
the conjunction of all temporal constraints that must be satisfied. Fortunately,
all temporal constraints give linear constraints whose variables are the T (ω, i)
items. Consequently their conjunction gives a system of linear constraints S,
which can be solved with linear programming techniques. If the system of con-
straints is built correctly, its solutions are valid timings which make the given
set of scheduling constraints feasible. With the current semantics of the lwait
instruction, S defines an octahedron [8] (all variable coefficients are in {−1, 0, 1})
but not an octagon [9] (a constraint may use more than two variables).

4.3 The Temporal Constraints

There are two sorts of temporal constraints. First, the solution must correspond
to valid timings. So for all (ω, i) ∈ Ω × [1..#(ω)], we add the two constraints

110 C. Helmstetter, F. Maraninchi, and L. Maillet-Contoz

inf(B(ω)) < T (ω, i) and T (ω, i) < sup(B(ω)). Second, each scheduling constraint
implies a temporal constraint.

In order to build temporal constraints implied by scheduling constraints, we
need the following definition. With each transition pi, we associate a symbolic
date noted sdate(pi). A symbolic date is a sum of variables T (ω, i) and constants.
We compute the symbolic date of a transition pi as follows:

1. if pi follows a wait with loose duration (pi−1 ended by a call to lwait),
then: sdate(pi) = sdate(pi−1) + T (ω, n) where ω is the identifier of this
lwait instruction and n its occurrence number.

2. if pi follows a wait with fixed duration (pi−1 ended by a call to wait(k)),
then: sdate(pi) = sdate(pi−1) + k;

3. if pi as been enabled by an immediate notification from transition qj , then:
sdate(pi) = sdate(qj);

4. if p is initially eligible, then p1 = 0.

We illustrate these rules on the example foochi with u = p1q1p2q2p3q3p4.
Symbolic dates do not depend on the timing. We have sdate(p1) = sdate(q1) = 0
(rule 4); next sdate(q2) = t3 and sdate(p2) = t1 and sdate(q3) = t3 + t4 (rule 1).
According to rule 3 on immediate notifications, we have sdate(p3) = sdate(q2) =
t3 and so sdate(p4) = sdate(p3) + t2 = t3 + t2 (rule 1).

Let “pi < qj” be a scheduling constraint, we build the associated temporal
constraint as follows: we first evaluate sdate(pi) and sdate(qj), which yields two
expressions e1 and e2; we then add to S the constraint “e1 ≤ e2”.

4.4 The Algorithm

Figure 8 presents the new algorithm. C is a set of scheduling constraints and u
a scheduling. S is a linear program and the functions is feasible and solution of
can be implemented with the simplex algorithm. On line (1), the timing T may
be incomplete, i.e., the value for some lwait instructions may be unspecified. In
this case, the simulation engine is free to choose any value in the given interval.
Initially we call GT with an empty set of scheduling constraints and an empty
timing. Let Tu be the concrete timing of the current scheduling u. Tu is always
a solution of the system of linear constraints S. In general, Tu is not a solution
of the system built on line (2).

We describe the first call to GT on the example foochi to illustrate this
algorithm. If we ignore the temporal aspects, the analysis of u = p1q1p2q2p3q3p4
generates two sets of constraints: {q2 < p2} and {p2 < q2; p4 < q3}.

The first set of constraints {q2 < p2} gives a linear system S′ containing only
the constraint sdate(q2) ≤ sdate(p2) which rewrites in t3 − t1 ≤ 0. We must also
respect bounds on variables: t1 ∈ [1, 5] and t3 ∈ [4, 8]. We ask a solution to the
linear programming library and get the solution t1 = t3 = 4. Finally, we call
GT ({q2 < p2}, {t1 = 4, t3 = 4}) (line (3) of the algorithm). These scheduling
constraints and this timing lead to the first error of foochi cited at end of
section 2.

The second set of constraints {p2 < q2; p4 < q3} gives the two constraints
t3 − t1 ≥ 0 and t2 − t4 ≤ 0. With the bounds t1 ∈ [1, 5], t2 ∈ [30, 50], t3 ∈ [4, 8]

Test Coverage for Loose Timing Annotations 111

GT (constraint set C, timing T): //initial call: GT (∅, ∅)
execute the SUTD according to C and T ; (1)
u= scheduling of the above execution;
linear system S = [];
for all (ω, i) ∈ Ω × [1..#(ω)] do

S = S • (T (ω, i) ∈ B(ω));
for all constraint “pi < qj” of C do

S = S • (sdate(pi) ≤ sdate(qj));
for all transitions pi and qj of u with pi <u qj such that:

(pi, qj) ∈ D ∩ P and
∃v, v |= C ∧ qj <v pi do

if is feasible(S • (sdate(qj) ≤ sdate(pi))) then (2)
T ′ = solution of(S • (sdate(qj) ≤ sdate(pi)));
GT (C ∪ “qj < pi”, T ′); (3)

C = C ∪ “pi < qj”;
S = S • (sdate(pi) ≤ sdate(qj));

Fig. 8. Main algorithm for the generation of timings

Set of all executions

with fixed delays with bounded delays

Set of all executions

with unbounded delays

Set of all executions

A B C

Fig. 9. Sets of all executions of the SUTD. The dashed lines delimit the equivalence
classes. The surrounded crosses represent generated executions, with arrows from father
to children. GS returns the surrounded crosses of the set A, GT those of B and G′

S

those of C.

and t4 ∈ [18, 30], one solution is t1 = t3 = 4 and t2 = t4 = 30. Finally, we call
GT again with this set of constraints and this timing as arguments. This leads
to the second error of foochi.

4.5 Elements for the Correctness of the Algorithm

In the general case, GT generates at least one representant of each equivalence
class, as GS does. On this example, we have generated one element of each

112 C. Helmstetter, F. Maraninchi, and L. Maillet-Contoz

equivalence class. First, we have suppressed the condition “the transitions pi

and qj are not permutable if date(pi) �= date(qj)” (line (*) of Figure 6). We call
G′

S the algorithm GS in which this condition has been suppressed. Running G′
S

on the SUTD generates a very large set E′ of schedulings which are valid if all
bounds of loose durations are extended to [0, ∞[. It is equivalent to removing all
delays of the SUTD. E′ contains at least one element of each equivalence class
of this “untimed” version of the SUTD.

Second, we have encoded the temporal constraints into a linear system S. The
only difference between G′

S and GT is that GT checks the feasibility of S. We
know by construction that there exists an execution (u, T) which satisfies a set
of scheduling constraints C if and only if the system S built from C is feasible.
Hence GT generates all elements of G′

S that satisfy the temporal constraints.
Figure 9 represents the sets of executions generated by GS , G′

S and GT .

5 Case Study: The MPEG Decoder System

We have complemented our prototype for GS with a prototype for GT . Figure 10
gives an overview of this new prototype. We instrument the C++/SystemC
source code with the SystemC front-end Pinapa [10] in order to detect the ac-
cesses to shared variables dynamically. We have chosen lp solve [11] to solve
the linear systems.

We have evaluated the tool on a small industrial case-study. This system
has 5 components: a master, a MPEG decoder, a display, a memory and a bus
model. There are about 50 000 lines of code and only 4 processes. This is quite
common in the more abstract models found in industry, because there is a lot
of sequential code, and very few synchronizations. Complete models of SoCs are
typically 3 to 6 times bigger than this MPEG decoder. The test is stopped after
the third decoded image, which corresponds to 150 transitions. One simulation
takes 0.39 s.

First, we run the GS prototype on a timed version without loose delays. It
generates 128 schedulings in 1 mn 08 s. No bug is found, which guarantees
that this test-case will run correctly on any SystemC implementation. The total
time spent splits into 50 s for running the SUTD 128 times and an overhead
of 18 s for the additional computations. The experiments have been run on a
Pentium 4 cadenced at 2.80 GHz.

The GS prototype can be used on an untimed version too. This untimed
version is obtained by replacing all timed instructions by their corresponding
untimed instructions. But the prototype failed to run to completion because the
scheduling space to explore is far too large. Indeed, removing time constraints
allows a lot of new interleavings. For the untimed version, we estimate the num-
ber of relevant schedulings to about 232. It would take many years to execute
them all. Most of this time would be spent exploring unrealistic interleavings.

The prototype of GT allows to test bounded-delay versions which are interme-
diate between the fixed-delay version and the fully untimed version. We replace
all instructions wait(d) by lwait(d,d*r). The number of valid interleavings

Test Coverage for Loose Timing Annotations 113

tracemodel

kernel
checker

programming
linear

patched
SystemCanalyzer

Pinapa

library

SystemC

+ mapping
model

new

+ timings

intrumented

GT

constraints

checkedraw trace

Fig. 10. The Prototype’s Architecture

BUS

MASTER MEMORY

DISPLAYLCMPEG

Fig. 11. Architecture of the
MPEG decoder system

increases when the global variable r increases. The goal is to validate the SUTD
with r as big as possible. We succeed in validating this MPEG decoder system
with r = 0.2. The GT prototype generates 3584 schedulings and timings in
35 mn 11 s. One must spend 23 mn 18 s to execute this system 3584 times. The
overhead is about 11 mn 53 s. Our goal is to validate the system with r = 0.5
but the first attemps show that our prototype is not fast enough yet.

6 Related Work

The idea of interpreting timing annotations in a loose way is quite natural. It
was already present in some modeling approaches based on fuzzy time (see, for
instance, [12]). However, these approaches are often dedicated to the handling of
imprecise functional information, while we focus on non-functional information.

The approach described in [13] has some similarities with ours. They run the
formal verifier vinas-p on a program with bounded delays to get test cases which
exhibit “failures”. Next, for each failure trace, they generate a system of linear
constraints and solve it using an integer linear programming solver. Finally, they
get new bounds for the delays specified in the program, which avoid failures.
Static partial order reduction is used during the formal verification step. Like
us, they found that the time spent to solve the generated linear programs is
quite small compared with the total time spent. The technique used in our tool
differs in two points: first we use dynamic POR, second the linear systems are
used inside the POR algorithm and not afterwards.

As far as we know, there is no verification tool for SystemC programs with
bounded delays yet. However, the tool LusSy [14] is able to translate auto-
matically SystemC programs into synchronous automata for which numerous
verification tools exist. Another approach would be to extend LusSy to translate
SystemC programs into timed automata which can be verified with tools such
as Kronos [15] or Uppaal [16] (this should be automatic; a manual translation
of SystemC programs into some formal language is too much error prone). The
approach described in this paper avoids the problem of relating a formal model

114 C. Helmstetter, F. Maraninchi, and L. Maillet-Contoz

with the source code; since it is developed for a testing framework, it scales
better than verification techniques.

7 Conclusion and Further Work

In previous work, we presented a method to explore the set of valid schedulings
of a SystemC program and a given data input. In this paper, we described a
generalization to the exploration of valid timings. Exploring alternative timings
may reveal more synchronization errors such as dead-locks or data-races, and
violations of specified temporal constraints too. We work directly on the pro-
gram so all errors found are true errors and not false warnings. The conjoint
use of dynamic partial order reduction and linear programming allows to avoid
redundant simulations of the system under test. As a result, we are now able to
increase the test coverage of real size SoC models.

We have implemented this new algorithm. The current prototype is already
efficient enough to cover exhaustively small timing variations (about 20%) of
medium size SoC models, or parts of full big SoCs. We still have many possible
improvements to study. First, using the pre-solve functionality of the lp solve
library should reduce the overhead due to the computation of timings. Indeed,
it seems we perform lots of redundant computations when solving the temporal
constraints. Second, we still produce some redundant executions. The dynamic
partial order reduction technique is not optimal; we can indeed get two schedul-
ings which are equivalent according to the computed dependency relationship.
In [5], P. Godefroid suggests the use of the sleep sets technique to eliminate
some of them. In addition, computing a more precise dependency relationship
will reduce the number of equivalence classes to cover. The dependency of two
transitions depends mainly of the way they communicate. Up to now, we have
only considered low level communication items (non-persistent events and shared
variables). Higher level communication mechanisms (persistent events, for exam-
ple) can be globally robust to the scheduler indeterminism although they perform
dependent accesses locally. Taking them into account should reduce dramatically
the total time spent. With these improvements, we hope to be able to cover wider
timing variations, up to 40% or 50%.

Another further work concerns the restrictions imposed on the programs we
validate. Currently, we forbid reading of the global date from the processes. For
example, the following instruction is not allowed: if (date()<45) {A} else
{B}, where date() returns the current global date. As a consequence of this re-
striction, the functional behavior of an execution depends only on its scheduling;
the timing is only used to know whether the scheduling is valid, and to get an
estimation of temporal performances of the final SoC. Instructions as above are
not common in the models we have studied, however they might be more fre-
quent or necessary in other domains; therefore extending our tool will be useful.
Our idea is the following: first, we add to the scheduling representations virtual
transitions of the form χ(t) meaning that the global date has just reached t.
Next, we consider that a virtual transition χ(t) is: 1) dependent and permutable

Test Coverage for Loose Timing Annotations 115

with all transitions which compare date() and t, and 2) causally ordered with
the other virtual transitions. Thus it is possible to treat all expressions of the
form date()<k without modifying the main algorithm; it could be extended to
multiple clocks with reset instructions but allowing all expressions using date()
is a harder task.

References

1. Helmstetter, C., Maraninchi, F., Maillet-Contoz, L., Moy, M.: Automatic gen-
eration of schedulings for improving the test coverage of systems-on-a-chip. In:
FMCAD, Springer (2006)

2. Ghenassia, F., ed.: Transaction-Level Modeling with SystemC. TLM Concepts and
Applications for Embedded Systems. Springer (2005) ISBN 0-387-26232-6.

3. Rose, J., Swan, S.: SCV Randomization (2003)
www.testbuilder.net/reports/scv randomization.pdf.

4. Kuhn, T., Oppold, T., Winterholer, M., Rosenstiel, W., Edwards, M., Kashai, Y.:
A framework for object oriented hardware specification, verification, and synthesis.
In: DAC ’01: Proceedings of the 38th conference on Design automation, New York,
NY, USA, ACM Press (2001) 413–418

5. Flanagan, C., Godefroid, P.: Dynamic partial-order reduction for model checking
software. In: Symposium on Principles of programming languages (POPL), New
York, NY, USA, ACM Press (2005) 110–121

6. Open SystemC Initiative: SystemC v2.0.1 Language Reference Manual. (2003)
http://www.systemc.org/.

7. Mazurkiewicz, A.: Trace theory. In: Advances in Petri nets 1986, part II on Petri
nets: applications and relationships to other models of concurrency, New York, NY,
USA, Springer-Verlag New York, Inc. (1987) 279–324

8. Clarisó, R., Cortadella, J.: The octahedron abstract domain. In Giacobazzi, R., ed.:
Static Analysis, 11th International Symposium, SAS 2004, Verona, Italy, August
26-28, 2004, Proceedings. Volume 3148 of Lecture Notes in Computer Science.,
Springer (2004) 312–327

9. Miné, A.: The octagon abstract domain. In: WCRE. (2001) 310
10. Moy, M., Maraninchi, F., Maillet-Contoz, L.: Pinapa (2005)

http://greensocs.sourceforge.net/pinapa/.
11. Berkelaar, M., et al.: Lp solve (1996)

http://www.cs.sunysb.edu/∼algorith/implement/lpsolve/implement.shtml.
12. L. A. Kunzle, R. Valette, B.P.C.: Temporal reasoning in fuzzy time petri nets.

Technical Report 98073, LAAS Toulouse (1998)
13. Yoneda, T., Kitai, T., Myers, C.J.: Automatic derivation of timing constraints by

failure analysis. In: CAV ’02: Proceedings of the 14th International Conference on
Computer Aided Verification, London, UK, Springer-Verlag (2002) 195–208

14. Moy, M., Maraninchi, F., Maillet-Contoz, L.: LusSy: A toolbox for the analysis
of systems-on-a-chip at the transactional level. In: International Conference on
Application of Concurrency to System Design. (2005)

15. Bozga, M., Daws, C., Maler, O., Olivero, A., Tripakis, S., Yovine, S.: Kronos: A
model-checking tool for real-time systems. In: Proc. 1998 Computer-Aided Verifi-
cation, CAV’98. Volume 1427 of Lecture Notes in Computer Science., Vancouver,
Canada, Springer-Verlag (1998)

16. Uppsala and Aalborg Universities: Uppaal (1994-2006)
http://www.uppaal.com/.

Model-Based Testing of a WAP Gateway:
An Industrial Case-Study

Anders Hessel and Paul Pettersson

Department of Information Technology, Uppsala University, P.O. Box 337,
SE-751 05 Uppsala, Sweden

{hessel,paupet}@it.uu.se

Abstract. We present experiences from a case study where a model-based ap-
proach to black-box testing is applied to verify that a Wireless Application Proto-
col (WAP) gateway conforms to its specification. The WAP gateway is developed
by Ericsson and used in mobile telephone networks to connect mobile phones
with the Internet. We focus on testing the software implementing the session
(WSP) and transaction (WTP) layers of the WAP protocol. These layers, and
their surrounding environment, are described as a network of timed automata.
To model the many sequence numbers (from a large domain) used in the proto-
col, we introduce an abstraction technique. We believe the suggested abstraction
technique will prove useful to model and analyse other similar protocols with
sequence numbers, in particular in the context of model-based testing.

A complete test bed is presented, which includes generation and execution
of test cases. It takes as input a model and a coverage criterion expressed as an
observer, and returns a verdict for each test case. The test bed includes existing
tools from Ericsson for test-case execution. To generate test suites, we use our
own tool CO�ER— a new test-case generation tool based on the real-time model-
checker UPPAAL.

1 Introduction

Testing is the dominating technique used in industry to validate that developed software
conforms to its specification. To improve the efficiency of testing, model-based testing
has been suggested as an approach to automate the generation of the tests to be per-
formed during testing. In model-based testing, a model is used to specify the desired
behavior of the developed software, and the testing efforts aims at finding discrepan-
cies between the behavior of an implementation and that specified by the model. This
process can be automated by applying a test generation tool to produce the tests, and by
automating the execution and validation of the tests using a test-execution tool.

Model-based test generation techniques have been studied thoroughly in the research
community [Tre96, HLSU02, LMN05] and several applications to industrial systems
have been reported, e.g., [BFG+00, LMNS05]. There is much less literature describing
industrial applications of model-based testing techniques for real-time systems, i.e.,
systems that must react to stimuli and produce output in a timely fashion, i.e., real-time
systems including, e.g., clients or servers using protocols with timing.

L. Brim et al. (Eds.): FMICS and PDMC 2006, LNCS 4346, pp. 116–131, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Model-Based Testing of a WAP Gateway: An Industrial Case-Study 117

In this paper, we present experiences from applying a model-based approach to per-
form black-box conformance testing of a gateway developed by Ericsson. The gateway
is used to connect mobile phone clients using the Wireless Application Protocol (WAP)
with the Internet. We present how the specification of the transaction layer (WTP) and
the session layer (WSP) have been described in the modeling language of timed au-
tomata [AD94]. The specific protocol used in the model is a connection oriented ver-
sion, and the model includes scenarios where several transactions are associated with a
session. In addition to the components constituting the WAP stack of the gateway, the
model also contains automata modeling abstract behavior and assumptions imposed on
the components in its environment, such as a web sever and terminals using the gateway.

A specific problem when modeling the WAP protocol is to model the sequence num-
bers, called Transaction Identifiers (TID), used in the exchanged packages, called Proto-
col Data Units (PDU). The protocol typically makes use of several TIDs with a domain
of size 215 using a sliding window of size 214. To make automatic analysis feasible,
previous models of the protocol, used for model-checking the specification, have intro-
duced a limit on the maximum allowed TID values, assuming that all behaviors of the
protocol will be covered with a small maximum TID value [GB00]. We take a different
approach and introduce an abstraction technique to handle TID values. It maintains the
concrete TID values, so that they can be accessed in the abstract test-cases generated
from the model.

To specify how thorough a test suite should test the WAP gateway, we select test
cases following some particular coverage criterion, such as coverage of control states
or edges in the model. As our model contains the environment of the system under test,
a test-case generation tool can find out how the environment should behave to drive the
system under test in a desired direction to fulfill a given coverage criterion. To formally
specify coverage criteria, we apply results from our previous work [BHJP05], where
we have proposed to use observer automaton with parameters as a formal specification
language for coverage criteria. We show that the observer language is expressive enough
to specify the coverage criteria used to test the WAP gateway.

To perform the actual testing, we have built a complete test bed that supports auto-
mated generation and execution of tests. It takes as input a network of timed automata
and an observer automaton, and uses our tool UPPAAL CO�ER to generate an abstract
test suite. UPPAAL CO�ER is a test generation tool based on the UPPAAL model checker
[LPY97]. The test suite is compiled, by a tool named tr2mac [Vil05], into a script pro-
gram that is executed by a test execution environment named TSC2, developed by Er-
icsson. TSC2 executes a script program by sending PDUs to the WAP gateway and
observing the PDUs received in response. If unexpected packages or timing is observed
the discrepancy is reported to a log file, and the testing proceeds with the next test case
in the suite.

From testing the WAP gateway, we report the effect of executing test suites generated
from extended versions of the edge, switch, and projection coverage criteria. In partic-
ular, we present two discrepancies between the model and the WAP gateway found
during testing, and observe that both these problems were found in the rather small test
suites satisfying the edge coverage criterion.

118 A. Hessel and P. Pettersson

The rest of this paper is organized as follows: in the next section we give an infor-
mal description of the studied WAP gateway. In Section 3 we present the abstraction
used to model sequence numbers in the model, presented in Section 4. In Section 5 we
present the test generation and execution tools, and results from testing the gateway. We
conclude the paper in Section 6, and then presents detailed models in an Appendix.

2 Wireless Application Protocol

The Wireless Application Protocol (WAP)1 is a global and open standard that specifies
an architecture for providing access to Internet services to mobile (hand-held) devices.
It is typically used when a mobile phone is used to browse Web pages on the Internet,
or when pictures or music are downloaded to a mobile phone. The WAP standard spec-
ifies both a protocol and a format, named Wireless Markup Language (WML) being
the WAP analogy to HTML used by HTTP. The WML format also has a compressed
binary encoding (WML/Binary) that is used during wireless communication to save
bandwidth.

An overview of a WAP gateway architecture is shown in Figure 1. A WAP gateway
converts between the WML content on the HTTP side, and WML/Binary on the mobile
side. It also serves as a proxy for translating WAP requests to Internet protocols (e.g.,
HTTP). The WAP side of a gateway typically consists of the following protocol lay-
ers: Wireless Session Protocol (WSP), Wireless Transaction Protocol (WTP), Wireless
Datagram Protocol (WDP), and a bearer layer such as e.g., GSM, CDMA, or UDP.

The internet side usually consists of the protocols Hypertext Transfer Protocol
(HTTP), Transmission Control Protocol (TCP), and Internet Protocol (IP). The WDP
layer and a bearer on the WAP side corresponds to the TCP/IP layers on the Internet
side. The security layers Wireless Transport Layer Security (WTLS) on the WAP side
and Secure Socket Layer (SSL) on the Internet side are optional and omitted in Figure 1.

WSP

IP

TCP

HTTP

WAP Application

Web Server

Transaction (WTP)

Transport (WDP)

Bearer (UDP)

Session (WSP)

Application (WAE)

WAP Terminal

WTP

WDP

UDP

TCP

HTTP

IP

WAP Gateway

Proxy

Fig. 1. WAP Gateway Architecture

1 The Wireless Application Protocol Architecture Specification is available at the
web page http://www.openmobilealliance.org/tech/affiliates/wap/
wapindex.html

Model-Based Testing of a WAP Gateway: An Industrial Case-Study 119

Time

Initiator Responder

Invoke

Invoke

Ack

Result

Invoke

Ack

Layer N − 1

Layer N

res

indcnf

req

(ii)(i)

Time

Class 0

Class 1

Class 2

Fig. 2. The three WTP transaction classes (i) and signaling terminology (ii)

The WAP specification defines two roles in the protocol. The part that starts a trans-
action is called initiator, and the other part is called responder. For example, a mobile
device is the initiator when it access data from the Internet, but it can also be the re-
sponder if a (push) initiator sends out a message to the mobile device. Communication
between initiator and responder is divided in three types of transaction classes, ranging
from class 0 in which no acknowledgments are used, to class 2 that also send acknowl-
edgments of results. The desired behavior the classes is shown in Figure 2(i).

In Figure 2(ii) the terminology for message signaling between layers in the WAP
stack is illustrated. An upper layer requests (req) a service from the layer below, which
then confirms (cnf) that the request has been handled. A message from a peer layer is
indicated (ind) by the layer below and the upper layer response (res) to notify that the
message is accepted. Some message types do not require response nor confirmation.

The data structures used to and from an upper layer in the WAP stack are called
Service Data Units (SDUs). The WTP layer has its own peer messages, e.g. acknowl-
edgment, and it conveys SDUs to and from its upper layers. The behavior of a WTP
layer is specified in the WAP specification as a state machine. In practice, every new
transaction is a new instance of the WTP state machine, and there can be many simul-
taneous transactions.

The interfaces of a WAP stack layer are called Service Access Points (SAP). In this
paper the Transport SAP (T-SAP), the Transaction SAP (TR-SAP), and the Session
SAP (S-SAP) will be referenced.

Session Layer: The WSP layer is responsible for handling sessions in the WAP pro-
tocol. A session is a collection of transactions from the same user that can be treated
commonly. An example of a case when a session is convenient is when a user logs in to
a Web server. When logged in, the session is used to authenticate subsequent requests.

120 A. Hessel and P. Pettersson

(GET) Method

WTP WSP

Release

WTP_Result

TR_Invoke_res

TR_Result_req
S_MethodResult_req

S_MethodInvoke_res

S_MethodInvoke_ind

TR_MethodInvoke_ind
TR_Invoke_ind

RcvAck
TR_Result_cnf S_MethodResult_cnf

Session Mgr
RcvInvoke

WTP trans

Fig. 3. Messages in the responder during a WSP GET request

If the session is disconnected (or aborted) all the transactions in the session will be
aborted.

The session layer consists of two parts: a Session Manager that handles the connect
and disconnect of a session, and a set of processes handling outstanding HTTP requests
called Methods. For example, at a GET request a GET-Method process is spawned off
to handle the request. A Method is associated with a WTP transaction and is terminated
when the transaction terminates. In Figure 3, a sequence diagram shows WSP, and the
underlying WTP layer, in a WAP responder stack during a successful GET request.
Note how the Session Manager is only involved in the initialization of the WSP.

Transaction Layer: The WAP transaction layer handles the sending and re-sending
of transactions. To separate transactions, each transaction is numbered with a unique
sequence number, called transaction identifier (TID). New TIDs are created by the ini-
tiator by incrementing the last created TID value by one. The initiator can have several
ongoing transactions with more than one responder, e.g., a server can push to several
terminals. Therefore, a responder cannot be sure that each new transaction has a TID
value incremented by exactly one.

The responder of a connection oriented session has a window of 214 TIDs. The last
TID value received from an initiator is saved in a variable named lastTID. The counter
wraps around at 215−1. When a new message arrives, it is directly accepted if the
TID value is not increased more than 214 times from lastTID. We will call such values
greater than lastTID, and other values less than lastTID, except if the value is equal to
lastTID.

If the bearer media reorders two messages so that the greater TID value arrives late,
the later message is said to be an out-of-order message. When an out of order message

Model-Based Testing of a WAP Gateway: An Industrial Case-Study 121

arrives, the responder invokes a so-called TID verification procedure before it contin-
ues. The TID verification is performed by sending a special acknowledge message (with
bit TIDve set). The initiator acknowledge (with bit TIDok) if it has an outstanding trans-
action with the same TID value.

If an initiator is out of synchronization with lastTID (e.g., after a reboot) it can avoid
further TID verifications (using bit TIDnew). This forces a TID verification that will set
lastTID to the TID of the TIDnew message. During TID verification no new transactions
are started by the initiator, and the responder removes any old transactions.

3 Abstraction for Test Case Generation

As described, the TIDs of the messages play an important role in the WAP specifica-
tion. An instance of the WAP protocol will typically make use of several TIDs from
the domain 0 to 215 −1, and a sliding window of size 214. Thus, the potential num-
bers of TID values will be infeasible for exhaustive model-based test-case generation
— the generation algorithm will experience the so-called state-space explosion prob-
lem [Hol97]. To overcome this problem, previous applications of automatic verification
techniques to the WAP protocol have limited the analysis to scenarios with only a single
transaction [HJ04, GB00]. We will take a different approach and introduce an abstrac-
tion. It will allow us to deal with abstract TID values during the analysis of the model,
while maintaining the concrete TID values so that concrete model traces can still be
generated.

Concrete domain: We assume a set T of TID variables t0, . . . , tN−1. To describe the
semantics we use a variable assignment v : T → {n | 0 ≤ n ≤ 215−1} ∪ {⊥}, where
⊥ represents the unassigned value. Initially all variables are unassigned. The variables
can be compared with Boolean combinations of ti < tj and ti ≤ tj , and manipulated
with the operations

ti = free v′(ti) =⊥
ti = tj v′(ti) = v(tj)
ti = new+ v′(ti) = max(v) + 1
ti = new− v′(ti) = min(v) − 1

where v′ is the resulting variable assignment, v the directly preceeding variable assign-
ment, and max(v) and min(v) the maximum and minimum assigned integer values of
all TIDs, respectively.

Abstract domain: We use a set A of abstract TID variables a0, . . . , aN−1, and an
abstract variable assignment va : A → {n | 0 ≤ n < N} ∪ {⊥}. We assume that
the set of abstract values is tight in the following sense: if va(ai) = k then there exists
va(aj) = l for all 0 ≤ l < k.

Abstraction of Concrete TID values: We define the abstraction function α : T → A
to be the mapping, such that α(ti) = 0 if min(v) = v(ti), α(ti)<α(tj) if v(ti)<v(tj),
α(ti)=α(tj) if v(ti)=v(tj), α(ti) =⊥ if v(ti) =⊥, and va is tight. A transition from
the abstract state va to v′a is possible if there exists a transition from v to v′, va = α(v),
and v′a = α(v′).

122 A. Hessel and P. Pettersson

The proposed abstraction is sound in the sense that properties in the abstract state-
space also hold in the concrete state-space. That is, if va = α(v), then the truth-value
of ti < tj or ti ≤ tj is the same for the corresponding abstract TIDs ai and aj . It
can be shown that the abstract transition relation is must abstraction and thus under-
approximates the concrete transition relation [LT88, BKY05].

Modeling and Analysis in UPPAAL: When modeling the WAP protocol, we shall use
ti = new+, ti = tj , and ti = new− to model assignment of new correct TID val-
ues, existing values, and values that are out of order, respectively. To implement the
abstraction, we use UPPAAL’s meta variables. Such variables are used to annotate mod-
els. They can be refered to in the model, but they are not considered when two states
are compared during analysis. We declare the set of concrete TID variables T as a vec-
tor of meta variables, the set of abstract TID variables A as vector of ordinary integer
variables, and apply the abstraction function to each state explored during state-space
exploration2. In this way, the analysis will explore concrete states until the reachable
abstract state-space is explored, while maintaining the concrete values to support gen-
eration of concrete test cases.

4 Testing Model

In this section, we describe our model of the WAP gateway. The model is emphasized on
the software layers WTP and WSP. They have been modeled as detailed and close to the
WAP specification as possible. Other parts of the gateway are modeled more abstractly,
but without loss of externally observable behavior affecting the WTP and WSP layers.
We have chosen to model the connection oriented version of the WAP protocol, where
several outstanding transaction can be held together into a session. The model has been
made with the intention to generate real system tests that can be executed over a physical
connection. Obviously, the complexity of making this kind of system model and system
test is much higher than to test each layer separately.

In Figure 4, an overview of the modeled automata and their conceptual connections
is shown as a flow-graph. The nodes represent timed automata [AD94] and the edges
synchronization channels or shared data, divided in two groups (with the small arrows
indicating the direction of communication). The model is divided in two parts, the gate-
way model, and the test environment model. The test environment consists of the two
automata Terminal and HTTP Sever. The gateway model is further divided in to a
WTP part, a WSP part, and globally shared data and timers3. The WTP part consists
of the service access point TSAP, two instances WTP0 and WTP1 of the WTP proto-
col, a WSP Session Manager, two instances Method 0 and Method 1 of the WSP
methods, and a session service access point SSAP.

2 We have implemented this in our UPPAAL CO�ER tool. The same affect can be achieved
by annotating each edge in the model with a simple function, implementing the abstraction
function.

3 To improve the readability of Figure 4, we have omitted many edges to and from the automata
Timer and Data Store.

Model-Based Testing of a WAP Gateway: An Industrial Case-Study 123

(Suspend)

Abort Release

TSAP_RcvAck
TSAP_RcvInvoke

S_Disconnect_ind

S_Connect_res

S_Connect_ind

S_MethodInvoke_res

S_MethodResult_ind
S_MethodAbort_ind

HTTP Server

HTTP_Req

HTTP_Answer

WSP Layer

Terminal2MIEP

MIEP2Terminal

WTP Layer

TSAP_RcvAbort
S_MethodResult_req

S_MethodInvoke_ind

TR_Invoke_ind

TR_Result_req
TR_Invoke_res

TR Abort ind

TR_Result_req

TSAP_SEND

Disconnect

TR_InvokeMethod_ind

WTP 0

WTP 1

TSAP

Method 1

Method 0

Session

Timers

SSAP

Manager

Terminal

Data Store

Fig. 4. Overview of the formal model

The idea of the model is to let the Terminal automaton model a mobile device that
non-deterministically stimulates the gateway with input and receives its output. In a
typical scenario, the Terminal requests a WML page from a web sever. The request
goes through an instance of the WTP and WSP layers and further to a web sever. In
case the page exists, it is sent back through the gateway, and is finally received in the
Terminal. Such a scenario is depicted in Figure 3.

In the following, we briefly describe how the WAP gateway specification and the
components in its environment have been modeled as a network of timed automata.
Due to lack of space, several of the automata are not shown in detail in this paper, but
can be found in [HP06].

4.1 Test Environment Model

The test environment consists of the two automata Terminal a HTTP Server. Mes-
sages from the terminal to the WAP gateway are modeled as the single synchronization
Terminal2MIEP, and similar in the other direction (see Figure 4). When the synchro-
nization occurs, a special set of global integer variables are assigned, which corresponds
to the fields of the protocol headers, e.g., WTP Type, WTP Class, or WSP Connect. Our
model is done so that any state preceding a Terminal2MIEP synchronization (similar in
the other direction), contains all values of the variables that corresponds to fields of the
modeled message. This is to facilitate the constructions of packets from model traces,
which is needed in the later stage when traces are compiled in to concrete test cases.

As mentioned, another important design decision is to let the Terminal model initiate
and control the whole interactions. A particular problem is to control the HTTP server.
We have solved this by sending control messages encoded into the message content,
from the terminal, all the way through the WAP gateway, to the HTTP sever. In this
way, the HTTP server can be instructed to delay its response message, drop a message,
or immediately return.

As the gateway model reacts to stimuli from Terminal, several instances of the WAP
layers automata will become active simultaneously. We use a counter to keep track of

124 A. Hessel and P. Pettersson

S_NULL

_got_invoke

_will_send_S_Connect_ind

CONNECTING

_will_send_TR_Invoke_res

_got_S_Connect_res

CONNECTING_2

_got_TR_Result_cnf

CONNECTED

_will_send_TR_Result_req

_got_WSP_Get_in_CONN _will_send_Release_in_CONN

_got_WSP_Get_in_C2

_will_send_Release

_aborting_all

disconnecting

_will_send_S_Disconnect_ind

_got_Abort_ind_in_C2

_init4_init3_init2_init1_init0

_got_Disconnect_in_C2

_will_send_TR_Abort_req

_skip_WSP_in_C2

TR_Invoke_ind?

SDU[TRSAP_Up_I][WSPType_I]==WSP_Connect,
SDU[TRSAP_Up_I][Class_I]==2

conn_trans:=SDU[TRSAP_Up_I][TID_I],
SDU[TRSAP_Down_I][TID_I]:=conn_trans,
procCount:= procCount+1

S_Connect_ind!

procCount:=procCount-1

move!

src:=TRSAP_Up_I,
dst:=SSAP_Up_I

TR_Invoke_res!

N_Methods:=0

S_Connect_res?
procCount:= procCount+1

TR_Result_cnf?
conn_trans==SDU[TRSAP_Up_I][TID_I]

procCount:= procCount+1

clean!
src:=TRSAP_Up_I,
conn_trans := NULL,
procCount:= procCount-1

TR_Result_req!

procCount:=procCount-1

SDU[TRSAP_Up_I][WSPType_I]==WSP_Get
TR_Invoke_ind?
procCount:=procCount+1

TR_Invoke_Method_ind!
Release!
procCount:=procCount-1

SDU[TRSAP_Up_I][WSPType_I]==WSP_Get
TR_Invoke_ind?
procCount:=procCount+1

TR_Invoke_Method_ind!

Release!
procCount:=procCount-1

Abort!
N_Methods > 0

SDU[TRSAP_Up_I][WSPType_I]==WSP_Disconnect,
SDU[TRSAP_Up_I][Class_I]==0
TR_Invoke_ind?

procCount:=procCount+1 move!
src:=WSP_I,
dst:=SSAP_Up_I

N_Methods==0

S_Disconnect_ind!
conn_trans := NULL,
procCount:=procCount-1

move!
src:=TRSAP_Up_I,
dst:=WSP_I

TR_Abort_ind?
procCount:=procCount+1

SDU[TRSAP_Up_I][TID_I]==conn_trans

move!
src:=TRSAP_Up_I,
dst:=WSP_I

clean!
src:=TRSAP_Down_I,
conn_trans := NULL,
procCount:=procCount-1

clean!
src:=TRSAP_Up_I

clean!
src:=WSP_I

clean!
src:=SSAP_Down_I

clean!
src:=SSAP_Up_I

SDU[TRSAP_Down_I][Clear_I]==0
SDU[TRSAP_Down_I][WSPType_I]:=WSP_ConnectReply,
SDU[TRSAP_Down_I][TID_I]:=conn_trans

Disconnect?
SDU[WSP_I][Reason_I]:=DISCONNECT,
procCount:=procCount+1

SDU[TRSAP_Down_I][Clear_I]==0
SDU[TRSAP_Down_I][TID_I]:=conn_trans,
SDU[TRSAP_Down_I][Reason_I]:=SDU[WSP_I][Reason_I]

TR_Abort_req!

SDU[TRSAP_Up_I][WSPType_I]!=WSP_Connect

SDU[TRSAP_Up_I][Reason_I]:=225,
procCount:=procCount+1

TR_Invoke_ind?

2 ==
(SDU[TRSAP_Up_I][WSPType_I]!=WSP_Disconnect)
+ (SDU[TRSAP_Up_I][WSPType_I]!=WSP_Get)

TR_Invoke_ind?

procCount:=procCount+1

2 ==(SDU[TRSAP_Up_I][WSPType_I]!=WSP_Disconnect)
+ (SDU[TRSAP_Up_I][WSPType_I]!=WSP_Get)
TR_Invoke_ind?
procCount:= procCount+1

move!
src:=TRSAP_Up_I,
dst:=TRSAP_Down_I

SDU[TRSAP_Down_I][Clear_I]==0

TR_Abort_req!
procCount:=procCount-1

SDU[TRSAP_Down_I][Class_I]!=0

move!
src:=TRSAP_Up_I,
dst:=TRSAP_Down_I

SDU[TRSAP_Down_I][Clear_I]==0

TR_Abort_req!
procCount := procCount-1

SDU[TRSAP_Down_I][Class_I]!=0

move!

dst:=TRSAP_Down_I,
src:=TRSAP_Up_I

SDU[TRSAP_Down_I][Clear_I]==0TR_Abort_req!
procCount:=procCount-1

SDU[TRSAP_Down_I][Class_I]!=0
SDU[TRSAP_Down_I][Class_I]==0

src:=TRSAP_Down_I,
procCount:=procCount-1

clean!

SDU[TRSAP_Down_I][Class_I]==0
procCount:=procCount-1,
src:=TRSAP_Down_I

clean!

SDU[TRSAP_Down_I][Class_I]
==0

src:=TRSAP_Down_I,
procCount:=procCount-1

clean!

SDU[TRSAP_Up_I][WSPType_I]== WSP_Disconnect
TR_Invoke_ind?
procCount:=procCount+1

SDU[TRSAP_Down_I][Clear]==0
SDU[TRSAP_Down_I][TID_I]:=conn_trans

TR_Abort_req!

procCount:=procCount+1

Disconnect?
SDU[WSP_I][Reason_I]:=DISCONNECT,
procCount:=procCount+1

Fig. 5. The Session Manager automaton

the number of active automata in the gateway model that are not in a stable state, i.e.,
a state where it is idle and waiting for new input. The counter is used to restrict the
Terminal from sending messages that will not be dealt with immediately. This scheme
avoids unnecessary interleavings and reduces the state-space of the model.

How the TID Abstraction is modeled: In the Terminal automaton, TIDs are assigned
when new PDUs are created, as described in Section 3. To use an existing TID value
(i.e., to perform an assignment), or to free a TID variable (i.e., set it to ⊥) is straight-
forward to model in UPPAAL. To model new+ and new−, we use two hidden variables
MinTID and MaxTID that are initialized to 214−1 and 214, respectively. All TID vari-
ables ti are initially ⊥. The operation ti = new+ can now be modeled by assigning a
variable ti the value of MaxTID followed by an incrementation of MaxTID, and dually
for the operation ti = new−.

4.2 Gateway Model

The gateway model is a detailed timed automata description made with the intention
to comply with the WAP specification as closely as possible. Communications between
two layers are modeled as synchronization labels and an array of data representing the
modeled fields values. All communications to or from WTP or WSP go via SAPs to
mimic the real protocol.

Model-Based Testing of a WAP Gateway: An Industrial Case-Study 125

S_NULL

HOLDING

_to_requesting_1

REQUESTING

_got_MethodInvoke_res

PROCESSING

REPLYING

_reinit

_to_holding

_to_requesting_2

INITIAL

_will_send_Abort

_aborting

_got_Abort_disconnect_in_processing

_got_Abort_suspend_in_processing

_got_Abort_disconnect_in_replying

_will_send_Disconnect

_abort_method

Release?
procCount:=procCount+1

S_MethodInvoke_res?

SDU[TRSAP_Down_I][TID_I]:=transaction,
SDU[TRSAP_Down_I][Clear_I]:=1,
SDU[SSAP_Down_I][TID_I]:=NULL,
SDU[SSAP_Down_I][Clear_I]:=0,
procCount:=procCount+1

SDU[TRSAP_Down_I][Clear_I]==0,
SDU[SSAP_Down_I][TID_I]==transaction

TR_Invoke_res!
procCount:=procCount-1

TR_Result_req!
procCount:=procCount-1

TR_Result_cnf?
N_Methods:= N_Methods-1,
SDU[SSAP_Up_I][TID_I]:=transaction,
SDU[TRSAP_Up_I][TID_I]:=NULL,
SDU[TRSAP_Up_I][Clear_I]:=0,
SDU[SSAP_Up_I][Clear_I]:=1,
procCount:= procCount+1

SDU[TRSAP_Up_I][TID_I]==transaction,
SDU[SSAP_Up_I][Clear_I]==0

S_MethodResult_cnf!
transaction:= NULL,
procCount:= procCount-1

TR_Invoke_Method_ind?
N_Methods := N_Methods+1,
transaction:=SDU[TRSAP_Up_I][TID_I],
procCount:=procCount+1

SDU[TRSAP_Up_I][TID_I] == resTIDreg[myTIDreg]

move!

src:=TRSAP_Up_I,
dst:=mystore,
procCount:=procCount-1

SDU[SSAP_Up_I][Clear_I]==0
move!
src:=mystore,
dst:=SSAP_Up_I,
SDU[SSAP_Up_I][Clear_I]:=1

S_MethodInvoke_ind!
procCount:=procCount-1

S_MethodResult_req?
SDU[SSAP_Down_I][WSPType_I]:= WSP_Reply,
procCount:=procCount+1

SDU[SSAP_Down_I][TID_I]==transaction

SDU[TRSAP_Down_I][Clear_I]==0
move!
src:=SSAP_Down_I,
dst:=TRSAP_Down_I

transaction:=NULL,
src:=mystore

clean!

N_Methods:=N_Methods-1,
transaction:=NULL,
procCount:=procCount-1

TR_Abort_req!

SDU[TRSAP_Down_I][Clear_I]==0

SDU[TRSAP_Down_I][Reason_I]:=SDU[WSP_I][Reason_I],
SDU[TRSAP_Down_I][TID_I]:=transaction,
SDU[TRSAP_Down_I][Clear_I]:=1

Abort?
procCount:= procCount +1

Abort?
procCount:= procCount+1

SDU[TRSAP_Up_I][TID_I]==transaction,
SDU[TRSAP_Up_I][Reason_I]==DISCONNECT
TR_Abort_ind?
procCount:=procCount+1

SDU[TRSAP_Up_I][TID_I]==transaction,
SDU[TRSAP_Up_I][Reason_I]==SUSPEND
TR_Abort_ind?
procCount:=procCount+1

clean!
src:=TRSAP_Up_I

clean!
src:=TRSAP_Up_I

SDU[TRSAP_Up_I][TID_I]==transaction,
SDU[TRSAP_Up_I][Reason_I]==DISCONNECT
TR_Abort_ind?
procCount:=procCount+1

clean!
src:=TRSAP_Up_I

Suspend!

Disconnect!

transaction:=NULL,
procCount:=procCount-1,
N_Methods:=N_Methods-1

Disconnect!

move!
src:=TRSAP_Up_I,
dst:=SSAP_Up_I

SDU[SSAP_Up_I][Clear_I]==0

S_MethodAbort_ind!

TR_Abort_ind?

SDU[TRSAP_Up_I][TID_I]==transaction,
SDU[TRSAP_Up_I][Reason_I]!=DISCONNECT,
SDU[TRSAP_Up_I][Reason_I]!=SUSPEND

procCount:=procCount+1

move!
src:=TRSAP_Up_I,
dst:=SSAP_Up_I

S_MethodAbort_ind!

N_Methods:=N_Methods-1,
transaction:=0,
procCount:=procCount-1

SDU[TRSAP_Up_I][TID_I]==transaction,
SDU[TRSAP_Up_I][TID_I]!=DISCONNECT
TR_Abort_ind?
procCount:=procCount+1

Fig. 6. The Method automaton

TSAP: As illustrated in Figure 4 the SAP below the WTP layer, called T-SAP, is
modeled by automaton TSAP that converts the raw data fields sent over the Termi-
nal2MIEP channel into signals that mimics a Transport SAP. In the upward direction,
TSAP converts the WTP layer data into signals, e.g., RcvInvoke, RcvAck, and Rcv-
Abort. In the downward direction TSAP merely copies the data to the environment
(i.e., no headers to be added). The TSAP automaton also inspects the TID value and
decides if the message should be delivered or dropped.

WTP layer: Two instances of the WTP layer are modeled, i.e., there can be two trans-
actions active at the same time. An instance is activated when a message arrives with
a TID that does not already exist in the layer. Successive messages with the same TID
are directed to the activated instance. The WTP automata are named WTP0 and WTP1
and are instances of the same automaton template in UPPAAL. All messages from the
WTP state machine of the WAP specification are modeled, including all types of aborts.
The timers are also modeled, with the two intervals acknowledge interval A and retry
interval R.

WSP layer: The WSP layer consists of two types of automata: session manager Ses-
sion Manager shown in Figure 5, and two methods automata Method0 and Method1,
shown in Figure 6. The Session Manager is responsible for connections and discon-
nections of the session. It forwards incoming method invokes, e.g., when a WML page
is requested. We model the GET method that, on the HTTP side, becomes a HTTP

126 A. Hessel and P. Pettersson

Web Server

TSC2

store
PDU

WAP Gatewaytr2macCoVer

Test Generation Test Execution

.cfg
pdu
list

.obs

.xml

Fig. 7. Overview of the setup used for testing the WAP gateway

GET request. When a session is disconnected all methods are aborted. Each method
has a corresponding outstanding transaction that it aborts. It is also possible to abort a
individual method transaction without terminating the whole session.

SSAP: Above the WSP layer is the Session SAP. We model an automaton SSAP that
mimics the gateway from the S-SAP to the communication with the HTTP server.

Timer: Timers are modeled by four instances of automaton Timer, two for each WTP
layer automaton. A timer can be activated and deactivated by the WTP automaton. If a
timer expires it sends a message to its WTP automaton.

Datastore: The automaton named Datastore manages data. Its memory is modeled
as an array where the rows are “owned” by different automata. The columns represent
fields in the PDUs. The Datastore automaton implements three convenient sub routines
that can be used by the other automata in the gateway: copy, clear, and move. To not
over-write data in an unintended way, the rows also include a Clear bit that is set when
new data is allowed to be written.

5 Test Generation and Execution

The tool setup used for generating and executing tests at Ericsson is shown in Figure 7.
The setup is divided in two parts, a test generation part for generating and transforming
test cases into executable format, and a test execution part that executes the tests on the
WAP gateway in a controlled computer network. In the following, we first describe the
test criteria used as input to our test generation tool, then the test generation, and last
how the tests were executed and some experiences.

5.1 Test Criteria

To specify how thorough a test suite should test a system, we select test cases following
some given coverage criteria. Before presenting the criteria, we (informally) character-
ize a stability property that will be used in all testing criteria. We say that the gateway
model is in a stable state if all automata are in locations modeling idling states from

Model-Based Testing of a WAP Gateway: An Industrial Case-Study 127

which they need an (input) synchronization to proceed. In the system under test, this
corresponds to a situation where the whole gateway is idle and waiting for some input
from the environment, which implies that there are no transactions active in the gate-
way, and no other ongoing activity. We shall use a predicate named stableState() that is
true only if the gateway model is in a stable state.

In Figure 8, the three coverage criteria used in this case study are formally specified
as observers with parameters [BHJP05] 4.

Edge Coverage Observer: It is shown in Figure 8(i). Assume that P is a set of au-
tomata. The expression edge(P) returns a value only if an automaton (in the set P) is
active in a transition. The parameter E is then assigned to the edge of the active process
in P . The observer then reaches state gotEdge(E), where E is the assigned edge. The
gotEdge(E) location has a true loop which allows it to stay in the location forever. When
the stableState() macro becomes true, the observer reaches location done(E), indicating
that the edge E is covered.

Intuitively, the edge coverage observer specifies that a test suite should cover as many
edges E of the automata in P as possible, given that after every E a state satisfying
stableState() is reached. If the set P includes two or more automata from the same
automaton template, we assume that edge(P) is the same identifier for both automata if
the same edge is traversed. That is, the edge is considered to be covered if it is traversed
by any instance of the template.

Switch Coverage Observer: The observer in Figure 8(ii) is similar to the edge cover-
age observer, but it specifies that any two adjacent edges in the same automaton instance
should be covered. In this case, it is crucial that the edges are from the same automaton.
Therefore, we require that the automaton P that takes the first edge E, must also take
the second edge E2.

Projection Coverage Observer: Figure 8(iii) shows an observer that specifies a pro-
jection criterion. It specifies that a pair of locations from the WTP layer, and the WSP
layer should be covered. The macro stackProj(WTP,WSP) returns a pair of locations
(L, L1), where L is from a WTP automaton, and L1 is from a WSP automaton. It is
further required that L and L1 are associated with the same transaction.

5.2 Test Generation

The problem of generating test cases is solved by the UPPAAL CO�ER tool, which
extends the model-checking tool UPPAAL with capabilities for generating test suites 5. It
takes as input the timed automata model of the WAP gateway described in the previous
section, and a coverage criterion specified as a parameterized observer (.xml and .obs
in Figure 7, respectively). The output of UPPAAL CO�ER is a set of abstract test cases
(or test specifications) represented as timed traces, i.e., alternating sequences of states,
and delays or discrete transitions, in the output format of the UPPAAL tool.

4 Due to lack of space, we refer the reader to [BHJP05] for a detailed description of the observer
language.

5 For more information about the UPPAAL CO�ER tool, see the web page http://user.
it.uu.se/˜hessel/CoVer/

128 A. Hessel and P. Pettersson

done(L,L1)

Switch(procid P;)

start

Edge(procid P;)

E := edge(P), P1:=P

firstE(E,P1)

secondE(E,E2)

done(E,E2)

true

notActive(P1)

E2 := edge(P1)

E := edge(P)

gotEdge(E) true

done(E)

start

com(L,L1) true

StackProj(procid WTP; procid WSP;)

(L,L1) := stackProj(WTP,WSP)

(iii)(ii)(i)

stableState()

stableState() stableState()

Fig. 8. The three observers used in the case study

Results: Table 1 shows the result of the test suite generation. Each row of the table
gives the numbers for a given coverage criteria and the automata it covers (used as
input). For example, WTP denotes WTP0 and WTP1 for which the tool has found 63
coverage items, i.e., edges in the WTP template. To cover the WTP edges a test suite
of 16 test cases is produced. The number of transitions of the test suite is 1562. The
test suite interacts with the system 92 times, i.e., 92 PDUs are communicated. We will
discuss the rightmost column in the next subsection.

The table shows the result of the other test criteria as well. We note that, as expected,
the switch coverage criterion requires many more test cases to be executed than edge
coverage. We also note that it is more efficient to execute the test suites covering all
templates at once, i.e., WTP, Session Manager, and Method, than to execute all the
individual test suites. For example, the test suite with edge coverage in all templates
sends 142 PDUs, whereas the sum of sent PDUs in the individual suites is 225. For
switch coverage the numbers are 467 compared to 555 PDUs.

Table 1. Test generation and execution results

Criteria Items Test suite Test script Failed tests
Observer Templates cases trans PDUs

Edge WTP 63 16 1562 92 1
Session Manager 46 12 1058 57 1
Method 31 10 1497 76 0
All 140 28 2548 142 2

Switch WTP 109 44 5082 313 2
Session Manager 76 28 3020 166 7
Method 37 9 1495 76 0
All 222 74 8129 467 10

StackProj All 101 21 2129 114 0

Model-Based Testing of a WAP Gateway: An Industrial Case-Study 129

5.3 Test Execution

The timed traces representing abstract test cases are converted to executable script pro-
grams by the tr2mac tool [Vil05], which also takes two configuration files as input (.cfg
in Figure 7). In a trace, each action label and combination of variable values in the
associated state, represents the parameters of a PDU to be sent or received, or a null op-
eration (all internal actions are mapped to null operations). The files .cfg describe how
to perform the translation for a given UPPAAL model, i.e., which labels to consider as
external and where to put the state variable values in the PDUs. Each delay of a timed
trace naturally represents a delay to be performed by the test program. The tr2mac pro-
gram accumulates the delays between non-null operations and inserts the result in the
script program.

The output of tr2mac is a script program that can be executed by the TSC2 test
environment, and a list of partially instantiated PDUs that will be needed. The PDUs
are fully instantiated at the time the script is executed in the test harness. The TID values
and information about the specific test environment, e.g., the IP addresses, are filled in
at execution time. In this way, many PDUs can be reused between different test cases
(and the set of needed PDUs will eventually become stable).

When TSC2 executes a script, all listed PDUs must be available in the PDU store6.
TSC2 will send PDUs to the WAP gateway and check that the expected response ap-
pear at the right time points. If this is not the case, TSC2 will report the discrepancy
to a log file, and proceed with the next test script. During testing, TSC2 acts in place
of the mobile device (i.e. the terminal). As described in the previous sections, the mo-
bile device (and thus TSC2 when executing the generated test cases) thus controls the
behavior of the surrounding computer network. The behavior of the web server is con-
trolled by sending parameters in the PDUs that are interpreted as commands by a php
script running on the web server.

Results: The test cases presented in the Table 1 have been executed on an in-house
version of the WAP gateway at Ericsson. As shown in the rightmost column of Table 1
most of the test case went well. A few tests failed due to two discrepancies — one in
the WTP automata and one in the Session Manager automaton.

The first discrepancy is in the WSP layer. The session manager is modeled to not ac-
cept any new Connect messages. Reading the WAP specification carefully, after finding
this discrepancy, we conclude that it is allowed to accept new Connect messages and
replace the current session if the layer above agrees. This problem in the model explains
the discrepancy found with the test suite covering the edges of Session Manager, and
the seven discrepancies found when executing the test suite with switch coverage in the
Session Manager.

The second discrepancy is a behavior present in our model of the WTP layer but not
in the tested WAP gateway. We found that no acknowledge is sent from the WTP state,
RESULT WAIT, when an (WTP) invoke is retransmitted and an acknowledgment has
already been sent. The retransmission is required in the WTP specification [For01] but

6 Currently, non-existing listed PDUs must be manually created. It is possible to automate also
this step.

130 A. Hessel and P. Pettersson

not performed by the implementation. This discrepancy was found both when running
test suites covering the edge and switch criteria of the WTP template.

We also observe that the two discrepancies were both found when executing the edge
covering test suites — one in the test suite for WTP, and the other in the test suite for
Session Manager. The test suite with switch coverage finds the same discrepancies,
but many times (as many as the erroneous edges appear in some switch). The suite with
projection coverage did not find any discrepancies.

6 Conclusion

We have presented a complete test bed where test cases are automatically produced and
executed, from a formal model and coverage criteria formally described as observers.
The validity of the tests has been proven in a case study where test cases have been
executed in a real test environment at Ericsson. The test generation techniques and
the coverage criteria used have industrial strength as complete test suites have been
generated for an industrial application, and discrepancies have been found between the
model and the real system.

We have also presented an abstraction technique that can be used in models making
use of sequence numbers with large domains. It preserves the relations needed when
comparing sequence numbers in the WAP protocol, while the size of the analyzed state
space is significantly reduced. We believe that the abstraction will be useful for speci-
fying and analyzing models of other protocols.

Acknowledgment

We thank the other members of the ASTEC AuToWay project at Ericsson and Uppsala
University: Tomas Aurell, Anders Axelssson, Johan Blom, Joel Dutt, Bengt Jonsson,
Natalie Jost, John Orre, Payman Tavanaye Rashid, and Per Vilhelmsson.

References

[AD94] R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer Science,
126(2):183–235, 1994.

[BFG+00] Marius Bozga, Jean-Claude Fernandez, Lucian Ghirvu, Claude Jard, Thierry Jéron,
Alain Kerbrat, Pierre Morel, and Laurent Mounier. Verification and test generation
for the sscop protocol. Science of Computer Programming, 36(1):27–52, 2000.

[BHJP05] J. Blom, A. Hessel, B. Jonsson, and P. Pettersson. Specifying and generating test
cases using observer automata. In J. Gabowski and B. Nielsen, editors, Proc.
4th International Workshop on Formal Approaches to Testing of Software 2004
(FATES’04), volume 3395 of Lecture Notes in Computer Science, pages 125–139.
Springer–Verlag, 2005.

[BKY05] Thomas Ball, Orna Kupferman, and Greta Yorsh. Abstraction for falsification. Tech-
nical Report MSR-TR-2005-50, Microsoft Research, June 2005.

[For01] WAP Forum. Wireless transaction protocol, version 10-jul-2001. online, 2001.
http://www.wapforum.org/.

Model-Based Testing of a WAP Gateway: An Industrial Case-Study 131

[GB00] S. Gordon and J. Billington. Analysing th wap class 2 wireless transaction protocol
using colored petri nets. In M. Nielsen and D. Simpson, editors, ICATPN 2000, vol-
ume 1825 of Lecture Notes in Computer Science, pages 207–226. Springer–Verlag,
2000.

[HJ04] Yu-Tong He and R. Janicki. Verification of the wap transaction layer. In Software
Engineering and Formal Methods, pages 366–375, 2004.

[HLSU02] H.S. Hong, I. Lee, O. Sokolsky, and H. Ural. A temporal logic based theory of test
coverage. In J.-P. Katoen and P. Stevens, editors, Tools and Algorithms for the Con-
struction and Analysis of Systems : 8th International Conference, (TACAS’02), vol-
ume 2280 of Lecture Notes in Computer Science, pages 327–341. Springer–Verlag,
2002.

[Hol97] G.J. Holzmann. The model checker SPIN. IEEE Trans. on Software Engineering,
SE-23(5):279–295, May 1997.

[HP06] Anders Hessel and Paul Pettersson. Model-based testing of a wap gateway: an in-
dustrial case-study. Technical Report 2006-045, Department of Information Tech-
nology, Uppsala University, 2006.

[LMN05] K. G. Larsen, M. Mikucionis, and B. Nielsen. Online testing of real-time systems
using uppaal. In J. Gabowski and B. Nielsen, editors, Proc. 4th International Work-
shop on Formal Approaches to Testing of Software 2004 (FATES’04), volume 3395
of Lecture Notes in Computer Science, pages 79–94. Springer–Verlag, 2005.

[LMNS05] Kim G. Larsen, Marius Mikucionis, Brian Nielsen, and Arne Skou. Testing real-
time embedded software using uppaal-tron - an industrial case study. In Proc. of the
5th ACM International Conference on Embedded Software, 2005.

[LPY97] K. G. Larsen, P. Pettersson, and W. Yi. UPPAAL in a Nutshell. Int. Journal on
Software Tools for Technology Transfer, 1(1–2):134–152, October 1997.

[LT88] K.G. Larsen and G.B. Thomsen. A modal process logic. In Proc. 3rd Int. Symp. on
Logic in Computer Science, 1988.

[Tre96] J. Tretmans. Test generation with inputs, outputs, and quiescence. In T. Margaria
and B. Steffen, editors, Tools and Algorithms for the Construction and Analysis of
Systems: 2nd Int. Workshop (TACAS’96), volume 1055 of Lecture Notes in Com-
puter Science, pages 127–146. Springer–Verlag, 1996.

[Vil05] Per Vilhelmsson. A test case translation tool - from abstract test sequences to con-
crete test programs. Technical report, Department of Information Technology, Up-
psala University, 2005.

Heuristics for ioco-Based Test-Based Modelling
(Extended Abstract)

Tim A.C. Willemse�

Institute for Computing and Information Sciences (ICIS)
Radboud University Nijmegen, The Netherlands

timw@cs.ru.nl

Abstract. Model-based conformance testing provides a mathematically sound
technique to assess the quality of systems and check the correctness of a system
with respect to a model. Most systems, however, are built or modified without
documenting the (new) specifications, thereby limiting the use of model-based
testing techniques. In this paper, we describe a method to obtain models automat-
ically from an existing system, using model-based testing techniques relying on
ioco-based testing. These models are useful for e.g. regression testing, or for the
testing of different configurations of systems. We illustrate the effectiveness of
our approach using a case-study in which we test mutants of the system against
models that have been automatically extracted from the (correct) system.

1 Introduction

Much of today’s systems engineering is predominantly evolutionary in nature. The bulk
of the systems are modifications of existing systems. These modifications should in
general lead to improvements of the quality of the system. An important tool in assuring
that this is indeed the case is regression testing. Regression testing tests whether these
modifications have no adverse effect on those parts of the systems that should not have
been affected by the changes. Testing is mostly a manual and labour intensive process,
often deprived of effective automation, leading to high costs and sometimes mediocre
product quality. Current insights indicate that the testing effort typically consumes up
to 50% of the total budget that is spent in developing a system, with regression testing
consuming an almost disproportionately large amount [5,8] of the total budget.

Model-based testing is a mathematically sound analysis technique that is used to
assess the level of quality of a system. The key idea is to use mathematical models of
a system to automatically generate and execute tests. Proponents of the technique are
quick to point out the benefits of this approach: the models are easier to understand
and maintain, amenable to verification, and are less prone to complex changes, while
the automation that can be achieved goes well beyond the mere automatic execution of
manually crafted test cases.

While the technique has been shown to work well on real-life systems, it has its
limitations. A major obstacle in applying the technique is rooted in the necessity to

� This work was carried out as part of the TANGRAM project under the responsibility of the
Embedded Systems Institute. Tangram is partially supported by the Netherlands Ministry of
Economic Affairs under grant TSIT2026.

L. Brim et al. (Eds.): FMICS and PDMC 2006, LNCS 4346, pp. 132–147, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Heuristics for ioco-Based Test-Based Modelling 133

have mathematical models of a system to start with. In practice these required models
are often unavailable. Obtaining the models a posteriori from alternative sources, such
as informal documentation and by conducting interviews, etcetera, is time consuming,
or even impossible (e.g. for third-party systems or legacy systems). As a result, model-
based testing is left without its engine.

The techniques we outline in this paper (collectively called test-based modelling
techniques) are a step in the direction of applying model-based testing tools to many
systems for which it is currently hard to obtain models. Our approach leans on the ideas
from machine learning, such as initiated by Angluin [1]; it uses experiments to obtain
partial models from running systems (i.e., actual implementations). While these models
are useless for testing the same system again (when the learning is done properly, all
tests should result in the verdict pass), they are valuable for other purposes, such as for
regression testing or for testing different configurations of the same system.

The contributions of this paper are twofold: first, we provide an approximation-based
basic algorithm, together with a set of heuristics, for constructing a model of a system
based on counter-examples found by ioco-based model-based testing. This algorithm
relies on a representation of the models using a subclass of suspension automata [11],
called valid suspension automata. We show that in the ioco-setting, valid suspension
automata have the exact same testing power as Labelled Transition Systems. Secondly,
we have tested the hypothesis that a constructed model can effectively be used for re-
gression testing and/or for testing of different configurations of the same system. This
is demonstrated by running a prototype implementation of our algorithm on the confer-
ence protocol. The conference protocol is a well-known, mutant-based, benchmarking
problem for testing (see e.g. [2]). The overall effectiveness of our approach is attested
by the fact that 85% of all mutants of the correct system can be detected. Although the
idea of using models, extracted from an implementation, for regression testing is not
new (see e.g. [7]), to our knowledge, ours is the first study that actually quantifies the
effectiveness of such an approach by means of mutant testing.

This paper is organised as follows. In Section 2, the testing theory ioco is outlined. In
Section 3, we introduce our test-based modelling algorithm. Section 4 describes three
heuristics to make the algorithm of Section 3 tractable in practice. Section 5 demon-
strates the techniques using a case study. We conclude our contribution in Section 6.

Related Work. Berg et al [3] are among the few to have studied the effectiveness and
applicability of Angluin’s learning algorithm, and an optimisation thereof. The studied
systems are generally small (up to 100 states). The authors conclude that the perfor-
mance of Angluin’s algorithm on prefix-closed automata comes close to its worst-case
complexity, which they find disappointing, since reactive systems can usually be mod-
elled using prefix-closed automata. Performance-wise, they remark that Angluin’s algo-
rithm has long execution times and a huge memory consumption. In [3], the information
that is needed as input for Angluin’s algorithm is extracted from formal models; this
contrasts our experiments, which are conducted on real implementations from which
we learn on-the-fly. Note that this also explains our long run-times when compared
to [3].

Hungar et al [6,7] and also Margaria et al [9] build their work around Angluin’s
learning algorithm. Several domain-specific optimisations over this basic algorithm are

134 T.A.C. Willemse

discussed. The optimisations are fuelled by expert (human) knowledge. Such knowl-
edge involves information concerning the symmetry of components and the indepen-
dence of actions, and techniques to reduce the number of redundant membership queries
that are generated by Angluin’s algorithm. While these techniques are developed within
the framework of testing of Finite-State Machines, most techniques described in these
works seem complementary to the techniques we describe in this paper and it is very
likely that these can be combined in some form.

Peled et al [10] advocate a different approach, combining model checking, testing
and automata learning. Logical properties, given by domain experts, are checked against
a model. Counter-examples are subsequently checked against the actual system and may
lead to improvements of the model or to documented faults. FSM-based conformance
testing is used when no counter-examples are found; the test outcome can again lead to
a modified model. Related to this approach is the tool VeriSoft [4] by Godefroid, which
can be used to verify concurrent systems. VeriSoft usually requires that all components
of the concurrent system that is verified are deterministic. For the verification, it relies
on model checking techniques, rather than testing techniques.

Most works are based on FSM-based testing, which usually relies on the assumption
that the implementation behaves deterministically and/or has a finite number of states;
our assumptions with respect to the system are more liberal, i.e. our technique can
also deal with non-deterministic systems with infinite state spaces. Furthermore, our
techniques do not require human intellect to drive the exploration technique, in contrast
to the approaches using model checking techniques, which require interesting properties
to be given by a human user.

2 Formal Testing Theory

The testing theory, used in this paper is based on refusal testing for Labelled Transition
Systems. We briefly introduce the basic mathematical ingredients and the conformance
relation ioco [11]. Most terminology is taken from [11].

Definition 1. A labelled transition system (LTS) is a four-tuple 〈S, s0, Act, →〉, where
S is a nonempty set of states, s0 ∈ S is the initial state, and, Act is a finite set of actions.
The special action τ /∈ Act denotes the unobservable event; we write Actτ for Act∪{τ}.
The relation →⊆ S × Actτ × S is the transition relation; we write s

a−→ s′ rather than
(s, a, s′) ∈→, and ∃s′ ∈ S. s

a−→ s′ is abbreviated to s
a−→. We use the name of the LTS

and its initial state interchangeably.

We restrict ourselves to LTSs that are strongly converging, i.e. have no infinite sequence
of τ actions. The set of all LTSs over actions Act is henceforth denoted L(Act). We
often distinguish between input actions ActI and output actions ActU , in which case
we require ActI ∩ActU = ∅. We denote the set of all LTSs with inputs ActI and outputs
ActU by L(ActI , ActU); we implicitly assume Act = ActI ∪ ActU . For the remainder
of this section, let L = 〈S, s0, Act, →〉 ∈ L(ActI , ActU).

A set of actions A ⊆ Act is a refusal of a state s ∈ S when ∀a ∈ A ∪ {τ}. s � a−→,
and we say that s suspends on A. For each state s of L that suspends on ActU , we add

Heuristics for ioco-Based Test-Based Modelling 135

a self-loop s
δ−→ s to L; formally δ /∈ Act. We define Actδ as Act ∪ {δ}. A state that

suspends on ActU is said to be quiescent.
Generalised transitions =⇒⊆ S × Act∗δ × S are given by the least set satisfying:

1. s
ε=⇒ s, with s ∈ S,

2. s
σ=⇒ s′ if s

σ=⇒ s′′ and s′′ τ−→ s′, with s, s′, s′′ ∈ S and σ ∈ Act∗δ ,
3. s

σa=⇒ s′ if s
σ=⇒ s′′ and s′′ a−→ s′, with s, s′, s′′ ∈ S, σ ∈ Act∗δ and a ∈ Actδ.

We abbreviate ∃s′ ∈ S. s
σ=⇒ s′ with s

σ=⇒ and s � σ=⇒ abbreviates not s
σ=⇒. We

define the following shorthands for all n ∈ N, s ∈ S, S′ ⊆ S and σ ∈ Act∗δ :

1. init(s) = {a ∈ Actτ | s
a−→ },

2. s-traces(s) = {σ ∈ Act∗δ | s
σ=⇒ },

3. s-tracesn(s) = { σ ∈ s-traces(s) | |σ| < n},
4. traces(s) = Act∗ ∩ s-traces(s),
5. der(s) = {s′ | ∃σ ∈ Act∗. s

σ=⇒ s′},
6. S′ after σ = {s′ | ∃s ∈ S′. s

σ=⇒ s′}. We write s after σ rather than {s} after σ.

We say that the behaviour starting in a state s is deterministic if:

∀σ ∈ traces(s). ∀t, t′ ∈ s after σ. t = t′ (1)

We say that L is input-enabled when:

∀s′ ∈ der(s0). ∀a ∈ ActI . s′ a=⇒ (2)

L ∈ L(ActI , ActU) is called an input/output transition system (IOTS) when L is
input-enabled. The set of all IOTSs over inputs ActI and outputs ActU is denoted
IO(ActI , ActU).

Conformance Testing is the act of assessing whether an implementation of a system
does what is prescribed by a specification of the system. We focus on a conformance
relation for dynamic behaviours, called ioco. Let S′ ⊆ S. We denote the set of outputs
—including quiescence— that can be observed from states in S′, by out(S′):

out(S′) = {x ∈ ActU | ∃s ∈ S′. x ∈ init(s)} ∪ {δ | ∃s ∈ S′. s
δ−→ s} (3)

The conformance relation ioco is defined as follows:

Definition 2. Let L ∈ L(ActI , ActU) be a specification, and I ∈ IO(ActI , ActU) an
implementation. I is a ioco-correct implementation of L, denoted I ioco L, when:

∀σ ∈ s-traces(L). out(I after σ) ⊆ out(L after σ) (4)

Example 1. As an example of the ioco-implementation relation, we consider the two
input-output transition systems L1, L2 ∈ IO({m?}, {c!, t!}), depicted in Fig. 1. Both
model a coffee-vending machine, where m? represents the insertion of money, c! repre-
sents coffee and t! represents tea. We find that L1 ioco L2 (i.e. an implementation may
be more selective in its output), but not L2 ioco L1 (i.e. an implementation may not pro-
duce unpredictable outputs). Note that by removing transition t! from L1, L1 ioco L2
no longer holds, because we then introduce a possibility to observe quiescence in L1,
which is not allowed by L2.

136 T.A.C. Willemse

m? m?

m?t!

m?

m?

m? c!

L1

m? m?

m?t!

m?

t!

c!
m?

m?

L2

Fig. 1. Two input-output transitions systems

Since the model for the implementation I is not necessarily known, proving that
I ioco L holds is usually not feasible, which is why tests are often derived from L that
can be executed on the running implementation I to obtain confidence that I ioco L
holds (or not). Tretmans [11] provides a detailed study of ioco, and also gives a sound
and complete test case derivation algorithm for testing for ioco conformance. This al-
gorithm underlies the tool TorX [2]. Note that the completeness result says that a test
can be derived to detect any non-conformance, not that it will be detected.

Testing for ioco-correctness is in practice not exhaustive, since e.g. infinite behav-
iours of a system (if present) are never tested, due to the finite nature of the testing ac-
tivity. We weaken general ioco to n-bounded ioco which makes the finiteness in depth
explicit.

Definition 3. Let L ∈ L(ActI , ActU) be a specification and let I ∈ IO(ActI , ActU)
be an implementation. Let n ∈ N be an arbitrary natural number. We say that I is an
n-bounded ioco-correct implementation, denoted I n-ioco L, when:

∀σ ∈ s-tracesn(L). out(I after σ) ⊆ out(L after σ) (5)

n-Bounded ioco-correctness guarantees that all behaviours of the implementation
which are of length smaller than n are followed by an observation that is permitted
by the specification. Behaviours of length n or larger are ignored.

3 Test-Based Modelling

In practice, most systems (e.g. legacy systems and third party components), do not come
with an adequate (in)formal specification, which means that model-based testing tech-
niques cannot be applied. Theoretically, this problem could be solved by employing
automata learning techniques, such as Angluin’s learning algorithm [1], to obtain these
models. However, to be industrially applicable as a technique, a practical learning al-
gorithm should be able to deal with systems that have very large state spaces, usually
even infinite ones (which prohibits the use of most FSM-based techniques), Angluin’s
algorithm currently seems to be unfit for such systems [3].

Most research focuses on optimising Angluin’s algorithm. We take a different ap-
proach, one that is orthogonal to the representation problem that is solved by Angluin’s

Heuristics for ioco-Based Test-Based Modelling 137

algorithm. In Section 3.3, we outline our test-based modelling algorithm, which can
be used to obtain a partial model from a system. The algorithm relies on ioco-based
test techniques. In Section 4, we discuss three heuristics that make the algorithm of
Section 3.3 applicable for industrially sized systems.

3.1 Representing Models: Valid Suspension Automata

The non-deterministic behaviour of a system is a major source of complexity when
learning its model by experimenting. A straightforward determinisation of the learnt
model is in general impossible without compromising ioco conformance. We therefore
recall the definition of suspension automata (SA) [11].

Suspension automata are deterministic LTSs with explicit inputs, outputs and a qui-
escence label δ, which is considered to be an output, and no τ -transitions. We denote
the set of all SAs over inputs ActI and outputs ActU by Lδ(ActI , ActU). We have
Lδ(ActI , ActU) ⊆ L(ActI , ActU ∪ {δ}). Tretmans [11] describes a transformation
Δ:L(ActI , ActU) → Lδ(ActI , ActU) that satisfies the following property:

Theorem 1 (Tretmans [11]). Let L ∈ L(ActI , ActU) be a specification, and let Δ(L)
be its SA, with initial state sδ. Then, for all implementations I:

I ioco L iff ∀σ ∈ traces(sδ). out(I after σ) ⊆ out(sδ after σ) (6)

The implications are that we can use the suspension automaton obtained from a speci-
fication when testing for ioco-conformance instead of the specification itself. We write
I ioco M for a suspension automaton M when I is ioco-conform to a specification
represented by M . There is, however, a large class of suspension automata that do not
correspond to specifications given by LTSs, as illustrated below.

Example 2. Consider suspension automaton M1 from Fig. 2. M1 models an anomalous
system: it produces an output after an observation of quiescence, and, it has a state
in which the system is neither quiescent, nor does it produce output. Next, consider

x! a?

δ

Fig. 2. SA M1

a? b?
δ

δ δ

δ δ

Fig. 3. SA M2

δ δ

b? b?

δ δ

δ
a?

s0 s1
δs2

δ

b?

Fig. 4. SA M3

suspension automaton M2 (Fig. 3). The trace δ b? is a valid trace in M2, the trace
b? is not. Hence, here the observation of quiescence adds new possibilities, which is
impossible in SAs derived from LTSs. Further, M2 is “instable” after the observation of
quiescence: M2 allows for a b? after one observation of δ, but not after two observations
of δ. M3 on the other hand, does represent the behaviour of an SA that could have been
the result from translating an LTS to an SA. ��

138 T.A.C. Willemse

In view of the preceding example, we introduce the following terminology. Let M =
〈S, sδ, Actδ, →〉 ∈ Lδ(ActI , ActU).

1. M is non-blocking when:
∀s ∈ der(sδ). ∃a ∈ ActU ∪ {δ}. s

a−→
2. M is quiescent reducible when:

∀s ∈ der(sδ). ∀σ ∈ Act∗δ . δσ ∈ traces(s) ⇒ σ ∈ traces(s)
3. M is anomaly-free when:

∀s ∈ der(sδ). ∀a ∈ ActU . δa �∈ traces(s)
4. M is stable when:

∀s ∈ der(sδ). ∃Σ ⊆ Act∗δ . ∀σ ∈ δ+. ∀s′ ∈ S. s
σ=⇒ s′ ⇒ traces(s′) = Σ

Intuitively, M is stable whenever the behaviours after observing quiescence are not

changed by new observations of quiescence: if s
δ−→ s′ δ−→ s′′, then traces(s′) =

traces(s′′). When M is non-blocking, quiescent reducible, anomaly-free and stable, we
say that M is valid, otherwise M is not valid. For LTSs and their suspension automata
we have the following result:

Proposition 1. Let L be an LTS. Then Δ(L) is valid.

Proof. In order to show validity of Δ(L), we must show that Δ(L) is non-blocking,
quiescent-reducible, anomaly-free and stable. Each property easily follows from the
definition of the translation function Δ. ��

This means that validity is a requirement that is respected by all suspension automata
that can be derived by translating LTSs. The following theorem states that for each valid
suspension automaton we can find at least one LTS, proving that for testing, valid SAs
can be used rather than LTSs.

Theorem 2. Let M ∈ Lδ(ActI , ActU) be a valid SA. Then, there is an LTS L ∈
L(ActI , ActU), such that for all implementations I:

I ioco M iff I ioco L

Proof (Sketch). Let M = 〈S, sδ, Actδ, →〉 be a valid SA. We define the relation �
on states of an SA as s � t iff traces(s) ⊆ traces(t), and we define the equivalence
relation ≡ on states as s ≡ t iff s � t and t � s. Let L = 〈S/≡, [sδ]≡, Act, →L〉 be an
LTS with state-space S/≡ consisting of ≡-equivalence classes of S, initial state [sδ]≡
the ≡-equivalence class of sδ and →L defined as:

1. if x ∈ Act and s
x−→ t, then also [s]≡

x−→L [t]≡,

2. if s
δ−→ t and s �≡ t then [s]≡

τ−→L [t]≡.

We refer to L as the canonical specification, induced by SA M . Then L satisfies the
following three properties:

1. traces(sδ) = s-traces([sδ]≡),
2. for all σ ∈ Act∗δ , out(s after σ) = out([s]≡ after σ),
3. for all σ ∈ Act∗δ , σ ∈ traces(s) iff out(s after σ) �= ∅.

Combined, these properties lead to I ioco M iff I ioco L for all implementations I . ��

Heuristics for ioco-Based Test-Based Modelling 139

3.2 Learning Hypothesis and Oracles

ioco-Based testing is rooted in several assumptions, collectively known as the testing
hypothesis, the most important assumption being that implementations can be modelled
using input/output transition systems [11]. These assumptions make testing practically
applicable. We strengthen the testing hypothesis with the following assumption, leading
to the learning hypothesis:

all output actions that can follow an experiment (sequence of inputs and outputs)
can, and will be observed by conducting the same experiment a finite (a priori
known) number of times.

Note that the learning hypothesis quantifies the fairness of the resolution of a non-
deterministic choice in a system, without attaching real values to this resolution. The
learning hypothesis provides us with a powerful oracle: the system-under-test itself.

3.3 Algorithm

Let I ∈ IO(ActI , ActU) be an (unknown model of an) implementation of a system.
The algorithm presented in Fig. 5 (hereafter referred to as the TBM-algorithm) auto-
matically constructs a suspension automaton H ∈ Lδ(ActI , ActU), such that I ioco H
holds on termination of the algorithm. First we define the following shorthands:

d-traces(s) = {σ ∈ traces(s) | ∀s′ ∈ s after σ. ∀a ∈ ActU ∪ {δ}. s′ � a−→}
⎧⎨
⎩

q-red(epsilon) = ε
q-red(δ σ) = σ
q-red(a σ) = a q-red(σ)

Theorem 3. On termination of the TBM-algorithm, with inputs N ∈ N and I ∈
IO(ActI , ActU), a valid SA H has been constructed that satisfies I ioco H.

Proof (Sketch). Implementation I can be modelled as a valid SA (Proposition 1). For
anomaly-freeness, stability and quiescent reducibility, we observe that the set of traces
of H is, at all times, a subset of the suspension traces of I; since I is anomaly-free, also
H is anomaly-free; since I is stable and since H adds δ-loops following an observation
of δ (line 4), H is stable; since I is quiescent reducible and since all inputs are added
in each (reachable) state of H, also H is quiescent reducible. Non-blockingness of H
of traces starting in state sε of length n − 1 or smaller is respected in the inner iteration
(lines 3-8), and non-blockingness of all traces starting in a reachable node of H is
ensured in lines 12-14. I ioco H holds as a result of the postcondition I N -ioco H of
the outer iteration in lines 3-8 and the closure in lines 12-14. ��

The TBM-algorithm computes a tree-like hypothesis (with δ-loops) that is such that
I is at least N -bounded ioco correct w.r.t. H. The learning phase (lines 3–8) is the
most crucial part of the algorithm. In this iteration, the hypothesis H is tested for n+1-
bounded ioco-correctness, and, possibly modified to cope with counterexamples (lines
5-6). The extension phase (line 9), extends the n+1-bounded ioco-correct hypothesis

140 T.A.C. Willemse

Input: implementation I with inputs ActI and outputs ActU , and an N ∈ N.
Output: Suspension automaton H = 〈S, sε, Actδ, T 〉, where:

− S = {sσ | σ ∈ Σ}, with Σ = Act∗δ \ Act∗δ δδ Act∗δ
− T is computed by the algorithm.

1. n, T := 0, ∅;
2. do n �= N →
3. do ¬(I (n+1)-ioco sε) →
4. choose σx from {σ′x′ ∈ Σ | |σ′| = n ∧ x′ ∈ out(I after σ′) \ out(sσ′)};
5. if x = δ → T := T ∪ {(sσ, δ, sσδ), (sσδ, δ, sσδ)};
6. [] x �= δ → T := T ∪ {(sσ, x, sσx)};
7. fi;
8. od;
9. T := T ∪ {(sρ, a, sρa) ∈ S × ActI × S | |ρ| = n ∧ sρ ∈ der(sε)};
10. n := n + 1;
11.od;
12.T := T ∪ {(sρ, x, sρ) ∈ S × ActU × S | ρ ∈ d-traces(sε) ∧ q-red(ρ) = ρ}
13. ∪{(sρ, δ, sρδ), (sρδ, δ, sρδ) ∈ S × {δ} × S | ρ ∈ d-traces(sε) ∧ q-red(ρ) = ρ}
14. ∪{(sρ, x, sq-red(ρ) x) ∈ S × Act \ ActI × S | ρ ∈ d-traces(sε) ∧ ρ �= q-red(ρ)};

Fig. 5. Algorithm for learning the SUT

at each node at depth n with new input transitions. Robustness of the hypothesis is
achieved in a third phase, viz. the closure phase (line 12-14). This phase is required to
ensure that the constructed suspension automaton is non-blocking and ensures general
ioco-conformance, rather than N -bounded ioco-correctness.

The size of the state-space of the hypothesis that is learnt by TBM-algorithm is
bound from below by |Actδ \ ActU |N and from above by |Actδ|N . The number of
experiments (tests) that are needed is also bound from below by M · |Actδ \ ActU |N ,
where M is the maximal number of times an experiment must be repeated to observe
all outputs that might follow; in practice, this number is rather optimistic, since the
non-deterministic behaviour of the system may prevent an experiment from running to
completion. Statistics may be used to find out the expected number of experiments, but
we leave this as a topic for future research.

δ m?

δ

δ

δ m? t!m?

Fig. 6. Hypothesis for IOLTS L2 when n is incremented to 2

Heuristics for ioco-Based Test-Based Modelling 141

Example 3. Applying the TBM-algorithm with N ≥ 2 on IOTS L2 of Fig. 1, we obtain
the hypothesis of Fig. 6 after variable n of the algorithm has been incremented to 2 (line
10). The depicted hypothesis is constructed as follows: initially, the hypothesis consists
of the state sε only, and the only experiment preventing I 1-ioco sε is an observation of
quiescence; the hypothesis is extended with a δ-transition and a δ-loop. The transition
m? is subsequently added in line 9. In the next iteration, the two experiments violating
I 2-ioco sε are m?t! and m?δ, so the hypothesis is extended accordingly, etcetera.

4 Heuristics

As a consequence of the large number of required experiments, the TBM-algorithm
has little practical significance. Our hypothesis is that the extension phase of the TBM-
algorithm is a root cause in the exponential blow-up of the state-space, since the number
of different outputs that can follow an experiment is for most sensible systems severely
limited. Reducing the number of newly introduced inputs therefore leads to a large re-
duction in the state-space that is built. Consequently, the number of experiments needed
to build and validate the hypothesis is also reduced. Not all inputs can be removed with-
out compromising the correctness of the TBM-algorithm, only some can. However,
valid suspension automata always remain non-blocking and anomaly-free by removing
input transitions.

Proposition 2. Let M = 〈S, s, Actδ, →〉 ∈ Lδ(ActI , ActU) be a valid suspension au-
tomaton. The SA M ′ = 〈S, s, Actδ, �→〉 ∈ Lδ(ActI , ActU), where �→=→I ∪((S ×
(Actδ \ ActI) × S)∩ →), in which →I⊆ (S × ActI × S)∩ → is an arbitrary relation,
is non-blocking and anomaly-free.

Proof. Follows from the fact that the transition relation �→ still coincides with → on
output transitions, and from the assumption that M is valid. ��

By removing input transitions ad random, a valid suspension automaton may become
non-quiescent reducible or unstable:

Example 4. Let M3 be given by the suspension automaton of Fig. 4 (page 137). Clearly,

M3 is a valid suspension automaton. Removing the transition s0
b?−→ will make M3 non-

quiescent reducible. Removing transition s2
b?−→ will make M3 unstable. ��

In the next sections, we study three heuristics that allow us to safely prune the state-
space of the hypothesis dynamically, i.e. the heuristics preserve the validity of the com-
puted suspension automaton. This means that stability and quiescent reducibility are
not affected by the heuristics. In the remainder of this section, we assume the heuristics
are defined for the hypothesis H, calculated by the TBM-algorithm.

4.1 Input Causality

The first heuristic that we study utilises the logs of the interactions of a system with its
environment, which are often available for diagnostic purposes.

142 T.A.C. Willemse

Definition 4. A usage profile of I is a finite, non-empty set U(I) ⊆ traces(I).
Usage profiles are merely traces; their added value lies in the fact that they implicitly
define causal relations between the possible stimuli.

Definition 5. Let I ∈ IO(ActI , ActU) be an implementation, and let U(I) be a usage
profile. Input causality is defined as a relation < ⊆ (ActI ∪ {⊥})2, where ⊥ is a
reserved constant, and:⎧⎨

⎩
⊥ < b iff ∃σ ∈ Act∗U , σ′ ∈ Act∗. σbσ′ ∈ U(I)
a < b iff ∃σ, σ′′ ∈ Act∗, σ′ ∈ Act∗U . σaσ′bσ′′ ∈ U(I)
⊥ < ⊥ iff not ∃σ, σ′ ∈ Act∗, b ∈ ActI . σbσ′ ∈ U(I)

(7)

Remark 1. Input causality does not require a usage profile per se: it can also be derived
from available partial specifications or manually constructed via interviews. It involves
high-level information, which often does not need deep knowledge about the system.
Modifying the input causality relation by hand can be used to select and isolate behav-
iours that have to (should) be avoided in learning the system.

Note that it is possible to have inputs a that are never followed by another input, i.e.
∀b ∈ ActI . a �< b. We close the input causality relation as follows:

Definition 6. Let < be the input causality for a usage profile U(I). Then the circular
input causality <c is defined as:

∀a ∈ ActI ∪ {⊥}, b ∈ ActI . a <c b iff (a < b∨⊥ < ⊥)∨(∀c ∈ ActI . a �< c∧⊥ < b)

We introduce the function trailing(σ), with σ ∈ Act∗δ , defined inductively as⎧⎨
⎩

trailing(ε) = ⊥
trailing(σa) = a if a ∈ ActI
trailing(σa) = trailing(σ) if a /∈ ActI

Let Tcw = {(sσ, a, sσa) ∈ S ×ActI ×S | |σ| = n∧sσ ∈ der(sε)∧ trailing(σ) <c a }.
Then heuristic 1 is obtained by replacing the assignment to T in line 7 in the TBM-
algorithm with the following assignment: T := T ∪ Tcw.

4.2 Penalty Functions

The selection of the right inputs can also be based on information derived from the hy-
pothesis model itself. In particular, we aim at quantifying the amount of information
a particular behaviour (i.e. a trace) adds to the hypothesis. We start with the basic ob-
servation that the length of the largest interval of inputs, after removing observations
of quiescence, in a behaviour is a good indicator for the amount of its information. Let
λ:Act∗δ → N be the function that returns the length of the largest subsequence of input
actions (not counting possible observations of quiescence) in a behaviour:

λ(σ) = max{n | ∃a1, . . . , an ∈ ActI . ∃σ′, σ′′ ∈ Act∗δ . σ = σ′a1δ
∗ . . . anδ∗σ′′} (8)

When λ(σ) > t for some threshold t ∈ N, it is reasonable to consider the information
in behaviour σ too low to invest in further investigating this behaviour. Let Tpf =
{(sσ, a, sσa) ∈ S × ActI × S | |σ| = n ∧ sσ ∈ der(sε) ∧ λ(σ) ≤ t}. Heuristic 2 is
then obtained by replacing the assignment to T in line 7 in the TBM-algorithm with the
following assignment: T := T ∪ Tpf .

Heuristics for ioco-Based Test-Based Modelling 143

4.3 Non-repetitive Quiescence

Repetitive quiescence is a powerful tool in the test-based modelling as it enables one
to find out which behaviours lead to outputs, which never do, and which lead to non-
deterministic behaviour when both quiescence and actual outputs are valid observations.
The observation of quiescence is also quite costly: in practice, it takes time to conclude
that no output will come. Disabling the notion of repetitive quiescence turns the TBM-
algorithm into an algorithm for test-based modelling with respect to a slightly weaker
testing relation, known as ioconf [11]. Let Tq = {(sσ, a, sσa) ∈ S × ActI × S | |σ| =

n ∧ sσ∈der(sε) ∧ (out(sσ) = {δ} ⇒ sσ � δ−→ sσ)}. Heuristic 3 is obtained by replacing
the assignment to T in line 7 with the following assignment: T := T ∪ Tq .

4.4 Combining Heuristics

All of the heuristics proposed in the previous sections are complementary, which means
that all heuristics can be combined. Let X be a non-empty subset of {cw, pf, q}. A
combination of heuristics is achieved by replacing line 7 of the TBM-algorithm with
the following assignment: T := T ∪ (

⋂
x∈X

Tx).

Proposition 3. The TBM-algorithm in combination with any non-empty subset of
heuristics 1,2 and 3, yields a valid suspension automaton.

Proof (Sketch). Because of Proposition 2, only stability and quiescent reducibility must
be shown for heuristics 1,2 and 3. For stability, we note that this is not affected by any
of the heuristics, since for each reachable state s of H, we have s after σ = s after σ′

for all σ, σ′ ∈ δ+. For quiescent reducibility, we note that heuristic 3 (non-repetitive
quiescence) by definition cannot conflict with quiescent reducibility. For heuristic 1
(input causality), we note that for a trace σδσ′ ∈ traces(sε), we find that trailing(σ) =
trailing(σδ), and, combined with the fact that implementation I is quiescent reducible,
we find that also σσ′ ∈ traces(sε). For heuristic 2 (penalty functions), we observe
that λ(σδ+σ′) = λ(σσ′) for all σ, σ′ ∈ Act∗δ , meaning that if σδ+a ∈ traces(sε),
for a ∈ ActI , then also σa ∈ traces(sε) (note that because H is anomaly-free, a /∈
ActU), and, because implementation I is also quiescent reducible, we find that also the
hypothesis H is quiescent reducible. For the combination of heuristics, we observe that
the intersection of the behaviours of two valid suspension automata that are derived
from the same valid suspension automaton yields a valid suspension automaton. ��

5 Experimental Data: The Conference Protocol

The conference protocol provides a rudimentary chatbox service to users participating
in a conference. A conference is formed by a collection of users that can exchange
messages with all conference partners in that conference. The unbounded number of
messages that can be exchanged makes the system effectively infinite-state. The part-
ners in a conference can change dynamically using join and leave primitives. Different
conferences can exist at the same time, but a user can only participate in at most one
conference at a time. The conference protocol relies on the service provided by UDP,

144 T.A.C. Willemse

i.e. data packets may get lost or duplicated or be delivered out of sequence but are never
corrupted or misdelivered.

We have used our approach for learning and testing a running ANSI-C implementa-
tion of the conference protocol. This setup was previously used to benchmark testing
theories [2] using mutant testing1. The mutants are ANSI-C implementations of the
conference protocol that have been derived from the correct implementation by deliber-
ately injecting a single error. These erroneous implementations are categorised in three
different groups: no outputs, no internal checks and no internal updates. The first group
contains implementations that sometimes fail to send output when they are required to
do so. The second group contains implementations that do not correctly check whether
they are allowed to participate in a conference, and the third group contains imple-
mentations that do not correctly administrate the set of conference partners. Given the
large set of documented mutants, the conference protocol makes for an ideal setup for
measuring the efficacy of the approach for regression testing and/or for the testing of
different configurations.

5.1 Experiments

Setup. Table 1 lists the characteristics of the derived hypotheses. The hypotheses were
derived from running the –what is believed to be– correct implementation of the con-
ference protocol, connected to a prototype implementation of our TBM-algorithm. Two
usage profiles were used in our experiments, and these were also used to determine the
size of the input interface (the set ActI) when the input causality was used. The first
usage profile (I) has |ActI | = 19 and is chiefly a run of the conference protocol in
which all parties behave “optimally”. The second usage profile (II) has |ActI | = 31
and consists of three runs which combine aspects of “optimal” behaviour with “bad
weather” behaviour. Each hypothesis represents the best hypothesis that can be guaran-
teed by experimenting with the implementation for 48 hours. For the operationalisation
of quiescence we adopted the standard approach in testing by setting a time-out of 3
seconds on the observation of output (i.e. we observe quiescence when the system did
not produce output for two seconds when asked for output). The learning hypothesis
was operationalised by conducting each derivable experiment 15 times.

Figures 7 and 8 show the growth characteristics in terms of number of states for a
given depth for each computed hypothesis. This is an important indicator as it can be
used to estimate the overall run-time that is required to guarantee a certain depth-of-
correctness. For instance, hypothesis I-6 is more likely to reach depth-of-correctness 15
than e.g. I-7. Additional learning time can therefore best be put into I-6.

Test Results. The computed hypotheses were subsequently used to test the 27 mutants
of the system. For this, we used standard model-based testing techniques. We used a
test suite consisting of tests that aimed at covering each output transition (including
quiescence) of a used hypothesis. The test results are listed in Table 2. In some cases,
it was not immediately clear whether the test-failure was due to an incorrect hypothesis

1 The conference protocol implementation and its mutants, together with a more detailed de-
scription, are available via http://fmt.cs.utwente.nl/ConfCase/

Heuristics for ioco-Based Test-Based Modelling 145

Table 1. Characteristics of the computed hypotheses (I-1 through II-15). N indicates the N -
bounded ioco correctness that could be achieved and S gives the number of states at depth N +1
(note that these figures do not include states introduced by the closing phase). An ‘x’ for ‘cw’
and/or ‘q’ indicates that heuristic 1 and/or 3 was used. A figure for ‘pf’ indicates the threshold
for heuristic 2. UP marks whether (the set of inputs of) usage profile I or II was used.

I-1 I-2 I-6 I-7 I-8 I-14 I-15 II-1 II-2 II-6 II-7 II-8 II-14 II-15

N 2 6 10 7 12 7 8 2 5 6 6 11 5 6
S 8,488 826 1,326 1,819 1,295 1,264 1,795 28,123 1,521 829 3,363 1,626 1,045 1,746

cw x x x x x x x x x x x x
pf 1 1 2 2 1 1 2 2
q x x x x x x
UP I I I I I I I II II II II II II II

I−1

I−8I−6

I−15

I−14

I−7

I−2

 0

 500

 1000

 1500

 2000

 0 2 4 6 8 10 12 14

Fig. 7. Growth characteristics for the hypothe-
ses with inputs determined by usage profile I

I−1 I−7

I−6

I−8

I−15

I−14

I−2

 0

 500

 1000

 1500

 2000

 0 2 4 6 8 10 12 14

Fig. 8. Growth characteristics for the hypothe-
ses with inputs determined by usage profile II

(recall that each experiment was conducted 15 times, which may have been too conser-
vative for some experiments) or the mutant. These cases were resolved by hand using
the informal documentation and a formalisation thereof.

5.2 Analysis and Discussion

The derived hypotheses are remarkably effective at singling out the mutants. The com-
bined detection power of hypotheses I-8 and II-8 is 85% of all mutants.

Analysing the influence of depth-of-correctness on the defect detection capability,
we find that usage profile I and usage profile II give slightly different results. For usage
profile I, defect detection at a given depth-of-correctness is smaller than defect detec-
tion at the same depth for usage profile II. Since usage profile II includes “bad weather”
behaviour, this may suggest that most robustness issues can be found at relatively small
depths. This may be explained from the fact that programming for robustness is gener-
ally trickier than programming for nominal behaviour. Issues with nominal behaviour
only show at greater depth. An explanation for this may be the increase in intrinsic
complexity in nominal behaviours with depth.

146 T.A.C. Willemse

Table 2. Test results obtained by testing mutants of the conference protocol against the derived
hypotheses. An ‘x’ indicates that the mutant was discovered.

Mutant I-1 I-2 I-6 I-7 I-8 I-14 I-15 II-1 II-2 II-6 II-7 II-8 II-14 II-15

100 x x x x x x x x x x
111 x x x x x x x x x x x x
384 x x x x x x x x x x
548 x x x x x
674 x x x x x x x x x x x x x x
687 x x x x x x x x x

293
398 x
444
666

214 x
247 x x x x x x x x x x x x
276 x x x x x x x x x x x x
289 x
294 x
332 x
345 x x x x
348 x x x x
358
462 x x x x x x
467 x x x x x x x x x x x
738 x x x x x x
749 x x x x x x x x x x x x
777 x
836 x x x x x x x x x x
856 x x x x
945 x

It is also clear from the test results that there is no single combination of heuris-
tics that should be used, although experience with other combinations of heuristics and
different usage profiles (not reported here) shows that the usage profiles appear to be
a minimum requirement; rather, the combination of several heuristics to compute dif-
ferent hypotheses appears to be more effective. The effect of the heuristics is clearly
illustrated by the great difference in detection power of the computed models without
heuristics (only I-1 and II-1), and with heuristics (all other hypotheses).

6 Conclusion

We have described a pragmatic approach to obtaining models of a system using black-
box testing techniques, with the goal of using these models for regression testing. The
approach is demonstrated using a well-known case study and the effectiveness is illus-
trated using mutant testing. The results of the case study, viz. the detection of 85% of all

Heuristics for ioco-Based Test-Based Modelling 147

mutants illustrates that the approach is feasible, and, moreover, effective for regression-
testing, or for the testing of different configurations.

Still, there is also some room for improvement, as approximately 15% of the mu-
tants avoid detection. Concerning issues for future research, we feel that it is important
to develop additional heuristics and use techniques from statistics, such that we can
stretch the detection rate over 85% within a period of 48 hours. The issue of cleverer
ways to represent a hypothesis becomes more important with the increase of the state-
space. While our experiments show that for now, representation is not yet an issue,
it will become problematic when experiments are run for weeks rather than days. At
that point, representation techniques such as employed and developed by Angluin [1]
become important. Reconciling Angluin’s L* algorithm with ioco-based testing may,
however, be quite tricky, if not impossible, as (1) all transformations have to respect
the validity of suspension automata, and (2) the basic starting assumptions are differ-
ent (e.g. ioco-based testing does not require the implementation to consist of a finite
number of states).

Acknowledgement. Jan Tretmans is thanked for pointing out an error in an earlier
version of this paper.

References

1. D. Angluin. Learning regular sets from queries and counterexamples. Information and
Computation, 2(75):87–106, 1987.

2. A. Belinfante, J. Feenstra, R.G. de Vries, J. Tretmans, N. Goga, L. Feijs, S. Mauw, and
L. Heerink. Formal test automation: A simple experiment. In G. Csopaki, S. Dibuz, and
K. Tarnay, editors, Testcom ’99, pages 179–196. Kluwer, 1999.

3. T. Berg, B. Jonsson, M. Leucker, and M. Saksena. Insights to angluin’s learning. In S. Etalle,
S. Mukhopadhyay, and A. Roychoudhury, editors, Proceedings of SVV 2003, volume 118 of
ENTCS, pages 3–18. Elsevier, 2005.

4. P. Godefroid. Verisoft: A tool for the automatic analysis of concurrent reactive software. In
Proceedings of CAV’97, volume 1254 of LNCS, pages 476–479. Springer-Verlag, 1997.

5. M.J. Harrold. Testing: A roadmap. In A. Finkelstein, editor, ICSE - Future of SE Track,
pages 61–72. ACM, 2000.

6. H. Hungar, T. Margaria, and B. Steffen. Domain-specific optimization in automata learning.
In W.A. Hunt Jr. and F. Somenzi, editors, Proceedings of CAV’03, volume 2725 of LNCS,
pages 315–327. Springer-Verlag, 2003.

7. H. Hungar, T. Margaria, and B. Steffen. Test-based model generation for legacy systems. In
IEEE international test conference (ITC), pages 971–980, 2003.

8. H.K.N. Leung and L.J. White. Insights into regression testing. Journal of Software Mainte-
nance: Research and Practice, 2:209–222, 1990.

9. T. Margaria, H. Raffelt, and B. Steffen. Knowledge-based relevance filtering for efficient
system-level test-based model generation (to appear). Innovations in Systems and Software
Engineering, 1(2):147–156, 2005.

10. D. Peled, M.Y. Vardi, and M. Yannakakis. Black box checking. In J. Wu, S.T. Chanson, and
Q. Gao, editors, Proceedings of FORTE/PSTV, volume 156, pages 225–240. Kluwer, 1999.

11. J. Tretmans. Test generation with inputs, outputs and repetetive quiescence. Software —
Concepts and Tools, 17(3):103–120, 1996.

Verifying VHDL Designs with Multiple Clocks in SMV�

A. Smrčka1, V. Řehák2, T. Vojnar1, D. Šafránek2, P. Matoušek1, and Z. Řehák2

1 FIT BUT, Brno, Czech Republic
{matousp,smrcka,vojnar}@fit.vutbr.cz

2 FI MU, Brno, Czech Republic
{xsafran1,xrehak,xrehak5}@fi.muni.cz

Abstract. The paper considers the problem of model checking real-life VHDL-
based hardware designs via their automated transformation to a model verifiable
using the SMV model checker. In particular, model checking of asynchronous
designs, i.e., designs driven by multiple clocks, is discussed. Two original ap-
proaches to compiling asynchronous VHDL designs to the SMV language such
that errors possibly arising from the asynchronicity are preserved are proposed.
The paper also presents results of experiments with using the proposed methods
for verification of several real-life asynchronous components of an FPGA-based
router being developed within the Liberouter project.

1 Introduction

The most recent verification technologies for design of hard-wired ASIC-based hard-
ware or FPGA firmware offer highly developed industrial verification tools which give
hardware designers a good support to minimise errors in the design of hardware synthe-
sised from high-level descriptions usually written in languages like VHDL or Verilog.
Such tools can be basically divided into two groups—simulation and testing, and for-
mal verification tools. Tools of the first group are focused on simulation of gate-level
signal behaviour and are commonly used, according to our experience, by hardware
designers as a necessary support of hardware development. Tools of the second group
augment the non-exhaustive simulation approach by model checking (formal assertion-
based verification) of entire Register Transfer Level (RTL) hardware description [13,4],
or checking of equivalence between an RTL description and the respective behavioural
description [5,2]. However, because of limitations caused by the state explosion prob-
lem, these tools still lack the property of being usable by verification non-experts. In the
case of, otherwise highly automated, model checking tools, the reason is that intricate
abstraction methods are needed to fight the state explosion. Especially, such abstraction

� This research has been supported by the CESNET activity “Programmable hardware”. Zdeněk
Řehák has been partially supported by the Academy of Sciences of the Czech Republic grant
No. 1ET408050503. Vojtěch Řehák has been partially supported by the research centre “In-
stitute for Theoretical Computer Science (ITI)”, project No. 1M0021620808. David Šafránek
has been supported by the Grant Agency of Czech republic (GA CR) grant No. 201/06/1338,
Aleš Smrčka and Tomáš Vojnar have been supported by the GA CR No. 102/04/0780, and Petr
Matoušek by the grant GA CR No. 102/05/0723.

L. Brim et al. (Eds.): FMICS and PDMC 2006, LNCS 4346, pp. 148–164, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Verifying VHDL Designs with Multiple Clocks in SMV 149

methods must be employed carefully to avoid any critical underapproximation poten-
tially introduced in the model being verified.

The most fundamental abstraction used in verification of hardware is the abstrac-
tion of the physical latency of a signal value change, the so-called zero-delay. Our re-
cent experience gained during verification of an FPGA-based design in the Liberouter
project [10] shows that such abstraction cannot be used for verification of some typical
parts of common FPGA hardware designs. More specifically, the zero-delay abstraction
is inadequate for designs controlled by clocks of two or more mutually asynchronous
clock domains. Especially, functional verification of clock domain crossing (CDC) sig-
nals behaviour requires a special care. At the same time, even though hardware design-
ers typically use some standard constructions to deal with CDC, they may be omitted by
mistake or a wrong mechanism wrt. the assumptions used in the rest of the design may
be used, and so there is a real need to check for possible errors related to asynchronicity.
Moreover, errors introduced due to an unexpected behaviour of CDC signals cannot be
easily found by standard simulation and testing tools.

The Liberouter project is aimed at the development of a high-speed network mon-
itoring and routing hardware [8,7] in the form of add-on cards for standard PCs. The
design of these cards is based on FPGA technology. We have been employing various
formal methods for verification of the design since the beginning of the project [12,9].
In this paper, we generalise our approach [6] of a direct temporal logic-based formal
verification of VHDL hardware description using Cadence SMV [13] for the case of
asynchronous hardware. Moreover, although we present our approach in a framework
specific for our project, we believe that it offers a general idea of how verification of
asynchronous hardware can be done even in different settings.

1.1 Related Work

There are simulation and testing approaches [1] which deal with transient behaviour
of designs. However, all these methods are incomplete because of the non-exhaustive
nature of design behaviour analysis.

The approach of [11] requires the design with CDC signals to be transformed into
a design extended with additional combinational logic which models the potential mis-
behaviour of CDC signals. Assertion-based verification is then applied to the resulting
design. The number of combinational logic elements added in this transformation in-
creases exponentially with the number of asynchronous clocks, thus the state explosion
of the resulting design complicates the verification. Moreover, there is no simplification
in the sense of automated detection of those parts of the design for which the discussed
transformation is necessary for a correct verification. Detection of CDC signals is re-
alised at the verification phase itself, hence the state explosion cannot be overcome
anyway in this method. Moreover, there are no arguments showing the generality of
the approach. The approach is illustrated on a simple example only and no discussion
of its efficiency is given.

Our approach offers a solution based on an extension of every critical gate to incor-
porate the delayed behaviour. Additionally, we also introduce an approximate solution
which suffers much less from the state explosion. In contrast to the work mentioned
in the previous paragraph, we focus on generality of our approach. Moreover, we also
evaluate the efficiency of our approach on a real case study.

150 A. Smrčka et al.

1.2 Our Contribution

In this paper, the problem of the above mentioned inadequacy of the zero-delay abstrac-
tion for multi-clock designs is carefully discussed and a general verification solution for
dealing with such designs is established. The proposed solution comprises a detection of
the relevant parts of the design for which the zero-delay abstraction cannot be employed
and furthermore defines a way of how such design parts are transformed and verified
using Cadence SMV. Besides the accurate solution, we also propose a solution based on
a safe overapproximation of the reachable states. According to our practical experience,
this solution is precise enough to handle various non-trivial real-life case studies while
offering much better performance results. The proposed methods are demonstrated and
compared on a real verification case study taken from the Liberouter project.

To the best of our knowledge, in the literature there is currently no general fully au-
tomated model checking solution for formal verification of designs controlled by asyn-
chronous clocks. Moreover, our approach employs the Cadence SMV model checking
tool which supports temporal logics (LTL, CTL). These logics are more expressive then
traditional assertion languages used in many industrial verification tools.

The structure of the paper is the following. Section 2 brings a brief introduction to
digital elements in digital hardware design, explains the case of situations when the
synchronisation problem occurs, and presents a way of formalising elementary hard-
ware entities in SMV. Section 3 describes precisely our methods how to find critical
signal paths in the design and how to verify the system with respect to the considered
properties. Section 4 illustrates our solution on a real example.

2 Formalising a Hardware Design

In this section, we shortly introduce elementary digital circuits and present our approach
to their formalisation in SMV. We are mainly concerned about precise modelling which
considers timing delays and unstable behaviour of the circuits. The issue is the most
critical for design and verification of synchronous digital circuits. In order to prove that
the design is correct using verification techniques, we have to (1) build a formal model
of the circuit that reflects the examined properties including the timing behaviour, and
(2) successfully verify the model using a model checker.

2.1 Preliminaries

In our work, we deal with logical circuits—discrete electronic circuits composed of ba-
sic entities like gates, flip-flops, and latches. A gate is a logical circuit with one or more
inputs that produces an output based on the current input values. The most well-known
are AND-, OR-, NOT-gates (or NAND-, NOR-gates) that are fundamental elements of
every logical circuit. A gate is usually called a combinational circuit, or a combinational
logic, as its output depends only on the current input combination [14].

Logical circuits that are able to store a value (they work like a register) are called
sequential logical circuits. An output of a sequential circuit depends not only on its
current inputs, but also on the past sequences of inputs. Formally, we can describe
the behaviour of a sequential logical circuit using a finite-state machine.

Verifying VHDL Designs with Multiple Clocks in SMV 151

We distinguish two basic kinds of sequential logical circuits—latches and flip-flops.
A latch is a sequential circuit that continuously watches all of its inputs and changes its
outputs at any time, independently of a clock signal. A flip-flop is a sequential circuit
that normally samples its inputs and changes its outputs only at the instants determined
by a clock tick. Common sequential circuits are D-latch, S-R latch, J-K flip-flop, etc.

2.2 Transient Behaviour

When dealing with the transient behaviour, we have to take into account what happens
when the signal changes between two adjacent states, e.g., on a falling edge (the signal
changes from a low level to a high level), or on a rising edge (from a high level to a low
level). In real circuits, changes of a signal take a nonzero time. The amount of time that
the output of a logical circuit requires to change its state is called the transition time.

HIGH

LOW

IDEAL:

REAL:

VILmax

VIHmin

tr t f
(a)

VIN

VOUT

VIN

VOUT

tpHL tpLH

tpLHtpHL

(b)

Fig. 1. (a) Transition times, (b) propagation delays

Fig. 1(a) shows the rise time tr and the fall time t f of a signal in a logical circuit.
This time information indicates how long an output voltage takes to pass through the
“undefined” region between the LOW and HIGH levels of signal.

The initial part of a transition before reaching the value VILmax , resp. VIHmin , is not in-
cluded in the rise- or fall-time value. Instead, it forms another parameter called a prop-
agation delay tp. The propagation delays tpHL and tpLH represent the amount of time
that it takes for a change of the input signal to produce a change of the output signal,
see Fig. 1(b). Finally, tpHL is the time between an input change and the corresponding
output change when the output is changing from HIGH to LOW, and tpLH is the time
between an input change and the output change when the output is changing from LOW
to HIGH (cf. Fig. 1(a).

2.3 Synchronisation Between Two Clock Domains

The transient behaviour described above is usually not considered in an abstract model
obtained when a hardware design specified by VHDL is transformed into an input lan-
guage of a verification tool. We call this kind of abstraction the zero delay abstraction.
In general, omitting the transient behaviour in the abstract model can lead to incorrect

152 A. Smrčka et al.

results. In this section, we explain the synchronisation problem that may cause the zero
delay abstraction to produce incorrect results in cases of asynchronous designs. In the
next section, we propose a precise way of modelling the transient behaviour.

If there is only one clock signal in the design, we do not need to care about propa-
gation delays and transition times. In such a case, the transient behaviour of any circuit
has no influence on the other parts of the design because every signal becomes stable
after the same period, and we may assure the period to be long enough for the signals
to stabilise—this issue is ensured by common hardware development tools. A synchro-
nisation problem occurs if two or more communicating circuits are controlled by dif-
ferent clocks. Fig. 2 demonstrates the synchronisation problem between two directly
connected gates X and Y. Gate X is controlled by clock C1, gate Y by C2, X has two
output signals A and B, B is a negated version of A. When clock C2 is enabled at time
terr, both signals A and B are in the process of changing. At this moment, their state is
undefined—both signals can be read out by gate Y either as 1 or 0 because their values
are not stable yet. This is the critical moment for the circuit behaviour and its modelling.

C2

B

A

C1

A

B

C2C1

X Y

terr

Fig. 2. The synchronisation problem between two clock domains

In our work, we propose a technique how to model this behaviour in order to verify
properties on a real-world design. In the analysis, we use a notion of a clock domain. A
clock domain is a part of the circuit. It is the maximal set of gates that are enabled by
the same clock signal. From the point of view of synchronisation, critical gates are the
gates on a signal path connecting different clock domains. A non-consistent behaviour
can appear while reading data transferred from gate X in domain D1 (enabled by signal
C1) at gate Y in domain D2 (controlled by signal C2), see Fig. 2.

To eliminate inconsistencies caused by the transient behaviour, designers typically
use Gray code, mux-synchronised signals, handshake synchronizers, or asynchronous
queues. Gray code is useful to guarantee a correct transfer of an integer variable whose
next value differs only by one digit from the previous one. The method of multiplexer
synchronised signals ensures that in one moment in time only one signal value may
change. Handshake synchronizers, asynchronous queues, and other techniques not men-
tioned in this paper are more general. Here, our concern is how to properly model the
transient behaviour in order to verify circuits where it appears.

2.4 Digital Circuits Design in VHDL and SMV

For the model checking approach, we need to specify the model formally as a finite
state transition system where states represent the current signal values and transitions

Verifying VHDL Designs with Multiple Clocks in SMV 153

represent their discrete changes. For this purpose, we use the Cadence SMV language [13]
which allows us to encode such a model. Moreover, using the SMV tool, we can prove
the properties of the circuits that we are interested in. For specification of such proper-
ties, we use a temporal logic. In this section, we describe how this modelling is done.
In particular, we demonstrate our technique of formalising a hardware design described
by VHDL. However, the approach is not dependent on a certain language and can easily
be adapted to other specification languages, e.g., VERILOG.

Each state of a transition system can be expressed as a vector of current values of
signals at a particular discrete point of time. In the timing diagram depicted in Fig. 3,
states are represented as columns of 0s and 1s denoting the LOW and the HIGH level
of signals (HIGH corresponds to 1 and LOW to 0). For elementary circuits controlled
by only one clock, we assume the zero delay abstraction to be used, which means ab-
stracting from the transient behaviour. Each transition (verification step) models the in-
stantaneous change of some signals with respect to their current values contained in the
source state. The target state then contains the new values of the signals being changed.

A combinational logic is captured directly by the notion of states. Relations between
signal values in a particular state specify a logical function of some combinational logic
elements. As the transition time has no influence on the behaviour of a combinational
logic, the zero delay abstraction fits here well. The modelling of sequential logic ele-
ments is more involved. In particular, a change of an output signal value in a sequential
circuit is modelled by a transition between states.

VHDL: SMV:
0

0

00 0

000

001 1 1

1 111

1 1 1 1out

in

010

0 0 0

000

1 1

1

 next(out) <= next(in);

do {

 }

process (gate, in)

 if gate = ’1’ then

 end if;
end process;

 out <= in;

 begin
 if (next(gate) = 1)

gate

Fig. 3. Latch in Cadence SMV

In the case of a latch, any change of the out signal is guarded by a simple condition
which requires the gate signal to have the HIGH level value. Encoding of a latch in
SMV is showed in Fig. 3. An example of a trace of the respective transition system is
depicted in the right-hand part of the figure. In every state in which gate is 1, the signal
out has the same value as the signal in; otherwise, it keeps its previous value. Note
that this behaviour is independent of any clock signal. Due to this asynchrony, the zero
delay abstraction does not violate soundness of the model.

In contrary to the latch case, modelling of a flip-flop is more complicated. More
specifically, in the case of a flip-flop circuit, whenever the current value of the clock
signal is LOW and the next value is HIGH, the next value of the output signal is set to
the current value of input. In Fig. 4 there is an SMV encoding of this behaviour and an
example of its trace.

Above, we have shown how we encode elementary design entities in SMV. Below,
we describe our general approach of modelling compositions of these elementary enti-
ties with correct treating of the transient behaviour whenever it cannot be abstracted.

154 A. Smrčka et al.

process (clk)
begin
 if clk’event and
 clk=’1’ then
 out <= in;
 end if;
end process;

do {

 }

 if (clk = 0 & next(clk) = 1)
 next(out) <= in;

0

0

0 0

0

001 1 1

1 111

1 1 1 1

clk

out

in

1

1

00

0

0 0 01

1 1 1

111

VHDL: SMV:

Fig. 4. Flip-Flop in Cadence SMV

3 Modelling Asynchronous Behaviour

In this section, we propose two ways of modelling asynchronous VHDL designs in
SMV which preserve errors possibly caused by the asynchronicity. In particular, we are
interested in preserving reachability of stable input and output values and state signals
combinations of the circuits. By stable signal values, we understand the values that are
obtained after a circuit is given a sufficient time to stabilise, i.e., values that one can
eventually observe when there is no change in clock signals. Moreover, the reasoning
can be generalised to preservation of sequences of stable signal values allowing one to
verify complex temporal properties.

An undesirable state can happen if a sequential gate reads an unstable signal value
and then it changes to a stable value. As we have already indicated, common VHDL
development tools (e.g., Leonardo [3]) check that signal paths within the same clock
domain are not too long wrt. the used clock frequency, and thus that the signals are given
sufficient time to stabilise. If the verified system has to be connected to systems such
that some input/output signal goes from one clock domain to another domain, the entire
combined system should be re-checked using the methods we propose here. Thus, we
ignore the possibility of obtaining unstable signal values within one clock domain.

We further suppose that the only asynchronicity in the circuits we consider is due
to the clock signals. This corresponds to the assumption that the set and reset signals
which may also be used to control sequential circuits are all connected together (i.e.,
there is just one set and/or reset signal for the whole design).

Both of the approaches we propose are based on modifying the behaviour of the
so-called critical signal paths between two clock domains. In the first approach, we
modify every gate on a critical path to make its output undefined (arbitrarily zero or
one) for a single verification step whenever a change occurs. In the second approach,
we introduce a special component called a destabilizer at the end of every critical path.
This component produces an undefined output for a number of verification steps corre-
sponding to the accumulated delay of the critical path.

We argue that the first mentioned approach enables us to detect all the possible er-
roneous signal combinations as described above, and at the same time, no overapproxi-
mation is (in most usual practical cases) involved. However, there is a price to be payed
for this due to an increased number of state variables contributing to the state explosion
problem. On the other hand, the second approach is a safe overapproximation that may
work in a number of practically interesting situations in a much faster way than the first

Verifying VHDL Designs with Multiple Clocks in SMV 155

approach, but it may sometimes raise false alarms. Note that we suffice with focusing
on only the critical paths as we suppose the design to be already checked by the above
mentioned common VHDL development tools which assure us that within a particular
clock domain, all the signals always stabilise before they are sensed by sequential gates.

Below, we first formalise the notion of critical paths and then explain both of the ap-
proaches we propose in detail.

3.1 Critical Signal Paths and Critical Gates

In order to precisely define the notion of critical gates, we view a particular VHDL
hardware design in an abstract way as a triple H = (S,C,G) where:

– S is a finite set of signals.
– C is a finite set of clock signals, C ∩ S = /0. In order to obtain a more regular de-

scription, we introduce a special clock signal ⊥ �∈ C ∪ S that we associate with
combinational gates. We denote C⊥ = C ∪{⊥}.

– G ⊆ C⊥ × 2S × 2S is a finite set of gates (combinational logic gates, flip-flops,
latches). A gate is represented as a tuple consisting of its clock signal (which is
⊥ for combinational gates), a set of input signals, and a set of output signals.

For a hardware design H = (S,C,G), a signal path π = 〈g1s1g2s2 . . . sn−1gn〉 of length
n > 1 is a connected sequence of gates and signals such that ∀ j ∈ {1, ...,n − 1} : g j =
(c j, I j,O j) ∈ G ∧ g j+1 = (c j+1, I j+1,O j+1) ∈ G ∧ s j ∈ O j ∩ I j+1. We denote Π(H) the
set of all signal paths of H, and for a signal path π ∈ Π(H), we denote Γ(π) the mul-
tiset of all the gates which appear in π and Σ(π) the set of all signals in π. For a path
π = 〈g1s1g2s2 . . . sn−1gn〉, we call γi(π) = g1 the input gate, γo(π) = gn the output gate,
σi(π) = s1 the input signal, and σo(π) = sn−1 the output signal.

We partition the set of gates G of a hardware design H = (S,C,G) into subsets called
clock domains that contain gates driven by the same clock signal. For c ∈ C⊥, the clock
domain is Dc = G∩ ({c}× 2S × 2S).

The set Rc of gates critical wrt. a domain Dc, c ∈C, is the set of gates which occur on
signal paths leading to Dc and that are connected to the gates in Dc via combinational
gates only. Equivalently, for a domain Dc, critical gates are all the gates on the signal
paths that start by a sequential gate lying in a different clock domain (including this se-
quential gate) and lead via combinational gates to a sequential gate in Dc (excluding this
terminal gate). Formally, Rc = {g1 ∈ G\ Dc | ∃n > 1 ∃s1, . . . ,sn−1 ∈ S ∃g2, . . . ,gn−1 ∈
D⊥ ∃gn ∈ Dc : 〈g1s1g2s2 . . .sn−1gn〉 ∈ Π(H)} for a hardware design H = (S,C,G).
The set R(H) of critical gates of H is then simply the union of all the gates critical
wrt. the particular domains of H, i.e., R(H) =

�
c∈C Rc.

Finally, a critical signal path of length n > 1 in a hardware design H = (S,C,G)
is a signal path ρ = 〈g1s1g2s2 . . . sn−1gn〉 ∈ Π(H) that consists of critical gates, i.e.,
∀i ∈ {1, ...,n − 1} : gi ∈ R(H), and goes from one clock domain to another one, i.e.,
g1 ∈ Dc1 ,g2 . . .gn−1 ∈ D⊥,gn ∈ Dc2 ,c1 �= c2,c1 �= ⊥,c2 �= ⊥. We denote ρ(H) the set of
all critical signal paths in H.

3.2 Extending All Critical Gates

We now discuss in detail the approach when we extend the behaviour of every gate on
a critical path to make its output random whenever there is a change of the stable value

156 A. Smrčka et al.

in its output. The fact that we make the output random stems from the reality where
a signal does not sharply change from 0 to 1 (or vice versa) but goes through some
rising (or falling) edge. When the signal is sensed by some sequential gate on such
an edge, one cannot predict its value. Note that when there is no change in the output,
no modification is necessary.

The basic principle of our transformation is the following. To model the impact of
rising and falling edges in the output of critical gates, we replace every output of every
critical gate by a new state signal—we call it a delayed output. The values of a delayed
output are given by the states of the finite automaton in Fig. 5(a). The arcs represent the
original (zero-delayed) output signal defined by a function f (i1, . . . , in) where i1, ..., in
are input signals of the gate. For example, when the delayed output is 0 and the original
output changes to 1, the automaton goes to R, and the delayed output becomes R (i.e.,
“rising”). Only then, provided the original output does not change, it transfers to 1.
Similarly, for a change of the original output from 1 to 0, the delayed output goes from
1 to F (“falling”) and then changes to 0.

0 R

F 1

 f(i ,...,i) = 1
1 n

 f(i ,...,i) = 0
1 n

 f(i ,...,i) = 0
1 n

 f(i ,...,i) = 0
1 n

 f(i ,...,i) = 1
1 n

 f(i ,...,i) = 0
1 n

 f(i ,...,i) = 1
1 n

 f(i ,...,i) = 1
1 n

(a)

A Y = f (A)
0 1
1 0

(b)

A f (A) Y Y ′

0 1 0 R
0 1 R 1
0 1 1 1
0 1 F R
1 0 0 0
1 0 R F
1 0 1 F
1 0 F 0

(c)

Fig. 5. (a) The finite automaton implementing a delayed output with the rising and falling edges
of signals, (b) the transition table of the zero-delayed NOT-gate, (c) delayed extended NOT-gate

As an example, let us consider an inverter (a NOT-gate with the function f (A) = ¬A
where A is the only input signal) which is a critical gate. We extend this gate with
the delayed output as shown in the table in Fig. 5(c). In the table, Y ′ is the future value
of the delayed output. Note that a gate that was originally a combinational one becomes
a gate with a state now.

Further, as digital gates are designed to handle only 0 and 1 values, we model the R
and F values as a random choice between 0 and 1 in the final model (which we denote
as the so-called x-value in the following).

To continue with our example, suppose that the input of the inverter (NOT-gate) is
a signal controlled by a clock C1 and that both the input and the output are sensed
by some sequential gate controlled by a clock C2. When the gates are modelled as
zero-delayed, cf. Fig. 6(a), we will never see that the sequential gate can sense both
the signals as equal (which we may suppose to cause real erroneous situations). This
will become visible in our model as depicted in Fig. 6(b)—see x-values depicted as
crosses in the figure.

A problem with the above extension of gates arises when there exist two paths linking
some sequential gates via combinational gates only such that one of them stays within a

Verifying VHDL Designs with Multiple Clocks in SMV 157

t_error t_error

C1

C2

10 0

00

0 0

0

0 0 0 0

0 0 0

0 0

0 0

1

1 1

1 1 1 1 1

1 1

1 1111111

11 1 11

C2

C1

a) b)

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0

1

1 1

1 1

1 1 1 1

1

1 1

1 1

1 1

111

1 1

A

f(A)

A

f(A)

1 10

Fig. 6. The input and output of the NOT-gate sensed as (a) zero-delayed and (b) delayed

single clock domain, the other one goes from one domain to a different one, and the two
paths intersect each other. More precisely, the problem arises when there exist signal
paths π1 = 〈g1,1s1,1 . . . s1,n1−1g1,n1〉, π2 = 〈g2,1s2,1 . . .s2,n2−1g2,n2〉 ∈ Π(H) of a hardware
design H = (S,C,G) for n1,n2 > 1 and some domains c1,c2,c3 ∈ C, c2 �= c3 such that
g1,1,g1,n1 ∈ Dc1 , g2,1 ∈ Dc2 , g2,n2 ∈ Dc3 , ∀i ∈ {1,2} ∀ j ∈ {2, ...,ni − 1} : gi, j ∈ D⊥,
and Γ(π1) ∩ Γ(π2) �= /0. In such a situation, we need to extend the gates in Γ(π1) ∩
Γ(π2) for the path π2, but to keep their original function within π1. To achieve this,
before the above described extension, we pre-process the circuit by replacing every gate
g2,i = ({⊥}, I,O) ∈ Γ(π1)∩ Γ(π2) within the path π2 by two gates g′

2,i = ({⊥}, I,O \
σ(π2)) and g′′

2,i = ({⊥}, I,O \ σ(π1)) with the same behaviour. We call the new gate
g′′ a duplicate. For further analysis, let ndup denote the number of new output signals
produced by duplicates.

Extending Simple Combinational Logic Gates in SMV. So far, we have described
the main principle of our technique of modelling asynchronous VHDL designs such that
errors possibly arising due to the asynchronicity are preserved. We now have a look at
how to apply this principle on transforming concrete gates from VHDL to SMV. We
start with the simple case of combinational logic gates.

Recall the zero-delayed model of a given design described in Section 2.4. In such
a model, circuits of combinational logic gates (NOT, AND, OR, NAND, NOR) are
translated to SMV simply in the form of logic expressions. Now, we have to (1) de-
fine state-bearing delaying modules for every type of a critical combinational gate that
appears in our design, (2) instantiate these modules (one instance for each particular
critical combinational gate), and (3) change the interconnection of the original zero-
delayed model such that the delayed outputs are used instead of the zero-delayed ones
for every critical combinational gate.

A state-bearing delaying module for a given combinational gate has the same input
and output signals as the original gate, but the output is computed according to the way
described in the previous section. To implement the delaying functionality with the in-
terleaved random signals corresponding to the automaton from Fig. 5(a), the module
has an internal state variable in which we remember the output of the original gate
computed according to its function (NOT, OR, ...) and we send it to the new output with
a delay of one step (if there is no change in it). To detect the changes in signals, we
may conveniently use the possibility of referring to the next values of signals offered by

158 A. Smrčka et al.

SMV. To illustrate this construction on a concrete example, we give below a delaying
module for a NAND gate (described in the SMV syntax).
module delayed_nand(out, in1, in2) {
input in1 : boolean;
input in2 : boolean;
output out : boolean;
orig_out : boolean;
-- the original NAND function
next(orig_out) := ˜(next(in1) & next(in2));
-- the delayed output
if (orig_out = next(orig_out)) next(out) := orig_out;
else next(out) := {0,1}; -- a random choice

}

Then, if there is used, e.g., an assignment z := w | ˜(x & y); somewhere, we de-
clare a new signal for the delayed output of the NAND over x and y, a new instance
of the delayed NAND computing this delayed signal, and we use this signal instead of
˜(x & y);. The construction is shown below with the delayed output of the NAND sent
to a delayed OR module whose implementation is very similar to the delayed NAND
and is not given here due to space limitations.
nand_output : boolean;
nand_module : delayed_nand(nand_output, x, y);
or_module : delayed_or(z, w, nand_output);

Extending More Complex Gates in SMV. More complex gates including flip-flops,
latches, and complex combinational gates like multiplexers are modelled as separate
SMV modules. We now have to create duplicates of such modules, extend them by new
internal signals to hold the original output, and define the outputs of these new modules
as delayed versions of the original outputs (interleaved with the random phases) much
like in the above case of simple combinational gates. For instance, a delayed D flip-flop
could then look as shown below.

module delayed_D(set, reset, in, clk, delayed_out) {
input set : boolean; input reset : boolean;
input in : boolean; input clk : boolean;
output delayed_out : boolean; -- the delayed output
orig_out : boolean; -- the original output
do { -- an initialisation phase

if (set) init(orig_out) := 1;
else if (reset) init(orig_out) := 0;
else if (clk) init(orig_out) := in;
init(delayed_out) := init(orig_out);

}
do { -- computing the original output

if (next(set)) next(orig_out) := 1;
else if (next(reset)) next(orig_out) := 0;
else if (˜clk & next(clk)) next(orig_out) := in;

}
------- the delay-based extension -- computing the delayed output -------
if (orig_out = next(orig_out)) next(delayed_out) := orig_out;
else next(delayed_out) := {0,1}; -- a random choice

}

A Justification of the Construction. The extension of only the critical gates is justi-
fied by our assumption that common VHDL development tools are used to check that
in all single clock domains, all signals have always enough time to stabilise before be-
ing sensed by sequential gates. Moreover, we suppose that input and output signals of
the entire checked design will be used within the same time domain as the gates which
consume these signals.

Verifying VHDL Designs with Multiple Clocks in SMV 159

As for the extension of critical gates, the modification makes their output
non-deterministic for a single verification step if the changed input would lead to a
change in the original output. If this change is permanent, the extension is clearly jus-
tified because when the signal is rising from 0 to 1 or falling from 1 to 0, it can be
sensed in an unpredictable way by the adjacent logic. On the other hand, when there is
no change in the output, no extension is needed. An interesting situation is when there
is a change in the output, but a temporary one only (the so-called hazard)—i.e., there
is a rising and immediately a falling edge (or vice versa). In such a case, our approach
introduces two random phases, which is again justified for most common-life cases as
it is difficult to guarantee that the generated peak or drop in the signal would never be
sensed (in any case, a design that would depend on this, would not be very clean).

The above justification is, however, valid only from the point of view of monitor-
ing a single signal. When we look at reachable combinations of multiple signal values,
the length of the random phase (the phase with x-value(s)) is also important. We make
it uniformly one verification step long which requires some further considerations. In
fact, in general, such an approach can introduce an underapproximation or overapprox-
imation though it does not happen in most practical situations (and it can be statically
checked whether such a situation arises or not). In particular, such cases can arise when
the involved gates significantly differ in their delays.

Let us first consider the case of two critical paths with a different length (a generali-
sation to more such paths is straightforward). Suppose we have two critical paths ρ1,ρ2

of lengths n1,n2 such that n1 < n2. If the accumulated delay of the gates in ρ1 is smaller
than in ρ2, clearly the output of ρ1 will stabilise before the output of ρ2, which corre-
sponds to our model. On the other hand, if the accumulated delay of the gates in ρ1 is
equal or greater than in ρ2, we need to keep the random phase longer than one step per
gate in ρ1 in order to obtain the desirable combination of two x-values at the ends of
both paths. A similar reasoning can then be employed in the case of two equally long
paths. If the accumulated delay of one of the paths was longer than the other one, we
would need to exclude the possibility of obtaining two undefined results. However, we
suppose that such conditions do not arise (which is usually the case and which can be
checked statically given the design and the descriptions of the used gates).

3.3 Extending Signal Paths

The previous section provides a method of modelling the progressive delay of a critical
signal propagation (and of the associated random phases when its value is changing)
via an extension of every critical gate. This method is rather precise but may cause
a significant state-space explosion due to the number of the newly introduced state
signals. Below, we try to avoid this explosion by introducing a less precise, approximate
model that can, according to our experience, still be sufficient in many practical cases.
In this approach, we do not extend every single critical gate, but instead, we put a special
new gate called a destabilizer on every output of a critical signal path.

As a basis which we try to overapproximate in the new approach, let us summarise
how the process of stabilisation of a signal σo(ρ) in a critical signal path ρ looks like
in the previous approach when we extend every critical gate by the delaying and ran-
domising phase. In that case, a critical gate can be viewed as a generator of stable and

160 A. Smrčka et al.

unstable values. If more critical gates are sequentially connected (they all appear in
the same critical signal path ρ), the unstable values are propagated through all critical
gates on the path, and every gate delays its new output value. The new defined value of
the signal σi(ρ) influences the signal σo(ρ) after the delay equal to the sum of delays
of all gates on ρ without the last gate γo(ρ). When σi(ρ) changes its value, it can cause
a temporary instability—the adjacent gates switch their output value through a rising or
falling edge when the value of the signal is not unambiguously defined, and the unde-
fined value is propagated to further gates. Due to modelling the delay of one gate as one
step, it takes L steps to influence σo(ρ) by σi(ρ) where L = |Γ(ρ)| − 1, i.e., unstable
values of the signal σo(ρ) can occur in at most L steps.

The principle of the approximate approach we propose is to replace the progressive
generation of unstable signals by having a single new gate called a destabilizer which
will generate all possible combinations of x-values of a signal for a period of L steps.
The destabilizer will be connected to the output signal of a critical signal path (σo(ρ))
where x-values can become visible. We create one destabilizer for every set of critical
signal paths having the same output signal. The destabilizer starts to generate x-values
if one of the input signals of these signal paths changes its value.

Formally, a destabilizer over a critical path ρ in a design H = (S,C,G) is a gate
δρ = (⊥, α(ρ)∪{σo(ρ)}, {ω}) to be added into G where α(ρ) = {σi(ρ′) | ρ′ ∈ ρ(H)∧
σo(ρ′) = σo(ρ)∧γo(ρ′) = γo(ρ)} is the set of input signals to be monitored (it is the set
of input signals of all critical signal paths sharing the output with ρ) and ω �∈ S∪C∪{⊥}
is a new unique signal representing the output of δρ. The original output signal σo(ρ)
of the given critical path ρ (and of the adjoining paths) becomes an input of δρ and is
sent to the output of δρ after the phase of instability implemented by δρ is over. Apart
from introducing δρ, we have to change the gate originally connected to ρ, i.e., γo(ρ),
such that it senses the output of δρ. In particular, if γo(ρ) = (c, I,O), we replace it by
γ′

o(ρ) = (c, (I \ {σo(ρ)})∪{ω}, O).
The behaviour of a destabilizer δρ is defined by the finite automaton shown in

Fig. 7—for brevity, the automaton is described with one bounded counter whose pos-
sible values are not included directly in the state-transition control. Let ν(α) �= ν′(α)
for a set of monitored signals α denote that some signal in α is changing its value (i.e.,
its current value differs from the value in the next step). If the destabilizer is in the
D state—when it has a defined value (in particular, σo(ρ)) on its output—and one of
the monitored signals changes its value, the destabilizer switches to the X state and
produces on its output the x-value, i.e., randomly 0 or 1. The destabilizer will hold in
the X state for a period of L verification steps where L is the number of critical gates in

D X

cnt = L

cnt < L,

cnt := 1

cnt := 1
cnt := cnt +1

v(α) �= v′(α),

v(α) = v′(α),

v(α) �= v′(α),

v(α) = v′(α),

Fig. 7. The automaton describing the behaviour of a destabilizer

Verifying VHDL Designs with Multiple Clocks in SMV 161

the longest critical signal path which the destabilizer is connected to, i.e., L is the max-
imum of |Γ(ρ′)|− 1 for ρ′ ∈ ρ(H) : σo(ρ′) = σo(ρ)∧ γo(ρ′) = γo(ρ).

Destabilizers in SMV. Let us consider a general destabilizer for n critical signal paths
with L being the length of the longest of these paths. In SMV, we can implement
the destabilizer as the following module with input signals in 1,...,in n to be con-
nected to the monitored inputs of the covered critical paths, the input signal out (the
original output to be delayed), and the new output signal omega.

module Destabilizer(in_1, ..., in_n, out, omega) {
output omega : boolean;
input out : boolean;
input in_1 : boolean;
...
input in_n : boolean;

cnt : 0..L; -- L is a constant value L = |Γ(ρ)|−1
init(cnt) := 0;
init(omega) := init(out);
next(cnt) := case {

-- one of the monitored signals is changing
(in_1!=next(in_1)) |
... |
(in_n!=next(in_n)) : 1; -- to state X

-- the counter reaches the maximum and all monitored signals hold
cnt=L & (in_1=next(in_1)) &

... &
(in_n=next(in_n)) : 0; -- to state D (cnt=L-1)

-- the counter is in (0;L) and all monitored signals hold
cnt>0 & (in1=next(in_1)) &

... &
(in2=next(in_n)) : cnt+1; -- to state X

-- all signals are stable
1 : 0; -- to state D

}
next(omega) := case {

next(cnt)=0 : next(out); -- cnt==0: propagate a defined value
next(cnt)>0 : {0,1}; -- cnt>0: output x-value

}
}

To illustrate how a destabilizer is connected to the rest of a modelled design, let us
consider a signal o whose stable value is computed as a function comb implemented
by a combinational logic with inputs α = { s 1, . . . , s n } and which is at the end of
a critical path. Let Z be the output gate consuming o. Z is a sequential gate that is in
a different clock domain than the gates from which the inputs s 1, . . . , s n are taken. In
SMV, this would correspond to the code fragment below.

o := function_comb(s_1, ..., s_n);
Z_m : Z(..., o, ...);

To introduce a destabilizer, we define a new delayed output omega, instantiate a de-
stabilizer with delayed o as its output, connect the original output o as an input of
the destabilizer, and replace the original output at the input of Z with omega.

o := function_comb(s_1, ..., s_n);
omega : boolean;
destabil_m : Destabilizer(s_1, ..., s_n, o, omega);
Z_m : Z(..., omega, ...);

162 A. Smrčka et al.

A Justification of the Construction. We are interested in proving that no dangerous
stable combination of signals is reachable even though there is a possibility that some
undefined signal values on critical signal paths will be sensed and registered. There-
fore a method which overapproximates the influence of working with undefined signal
values on the reachable stable combinations of signals is a sound solution.

A destabilizer is connected to the output of several critical paths. In the previously
described method based on extending all gates in critical signal paths, it takes at most
L = |Γ(ρ)|− 1 steps to stabilise the output signal if the input signal of any critical path
changes (provided ρ is the longest path). A destabilizer produces x-values for L steps
if any of the input signals changes. Thus, the destabilizer method will generate all the
combinations of signals to be sensed and become stable as in the method based on
extending all gates in critical signal paths and may be even more. Therefore, it is a safe
overapproximation of the extension of all gates in critical signal paths.

However, if a model checker returns a counterexample in a model using destabilizers,
we cannot be sure if it reflects a possible behaviour of the real system. In such a case, we
must use a more precise model based on the extension of all critical gates and perform
the verification once again. One could also think of performing the check only on the
given path and possibly using the extension of all critical gates only on this path. A
proper investigation of such an approach is a part of our future work.

We said that destabilizers often save a number of state variables compared to the
method of extending all critical gates. Let us examine when this approach is efficient
wrt. the number of state variables. The method based on extending all gates in a crit-
ical signal path creates one new binary state variable per a critical gate (for a criti-
cal signal path ρ ∈ Π(H), this means |Γ(ρ)| − 1 new variables) plus ndup state vari-
ables for duplicated state signals—we mean the duplication due to the case where
ρ ∈ ρ(H),π ∈ Π(H),π /∈ ρ(H),Γ(ρ)∩Γ(π) �= /0. One destabilizer can replace the exten-
sion of all critical gates that is needed in the first method on more than one critical signal
paths. The number of gates in these critical paths is λ = |Gd |− 1 for Gd =

�n
i=1 Γ(ρi)

where σo(ρ1) = σo(ρ2) = · · · = σo(ρn), n ≥ 1. The method of signal path extension
adds to the system three types of variables: (a) a binary variable of the new output—
the ω signal, (b) a counter of unstable values of the range [0;λ] (i.e., the size of the
counter is �log(λ + 1)�), and (c) ndiv duplicated state signals for the destabilizer due to
the division of input gates (which may appear when combining the method of destabi-
lizers with extending all critical gates as explained in the next paragraph). The method
using destabilizers pays off if λ + ndup > �log(λ + 1)�+ 1 + ndiv, hence in the case of
ndup = ndiv = 0, we get λ ≥ 5.

Combining Both Methods. To achieve a satisfying ratio between a model accuracy
and its state space size, we are able to combine both proposed methods in one model.
We are interested in behaviours when an unstable value is registered and propagated
further to the design. Both methods are able to stabilise the signal with the same delay
(the delay of L steps). Therefore, we can apply both methods on different critical signal
paths. By selecting which of the methods should be used on a certain critical signal
path, we can fine-tune the verification process by trading the accuracy of the result (due
to the overapproximation by destabilizers) for the model complexity (the extension of

Verifying VHDL Designs with Multiple Clocks in SMV 163

all critical gates). Such a combination is safe if we avoid the specific case when both
methods influence each other as discussed below.

Consider a circuit where two critical signal paths begin in the same gate and continue
with a different signal, i.e., ρ1,ρ2 ∈ Π(H), ρ1 �= ρ2, g = γi(ρ1) = γi(ρ2), and σi(ρ1) �=
σi(ρ2). When we use the extension of all critical gates on the first signal path and
the destabilizer on the second path, the first method extends the gate g = γi(ρ1) with
a delayed output. However, we must also preserve its zero-delayed behaviour for the
second method, and so the shared starting gate g must be divided into two separate
gates g1 and g2 such that if g = (c, I,O), then g1 = (c, I,O\{σi(ρ2)}) and g2 = (c, I,O\
{σi(ρ1)}). Let ndiv be the number of duplicated state signals caused by the division of
all such gates in the model.

A similar problem appears if two critical paths with an application of both meth-
ods share some of the intermediate gates. For every pair of the critical signal paths
ρ1,ρ2 ∈ Π(H), ρ1 �= ρ2, and all shared gates Γ1,2 = (Γ(ρ1)\{γi(ρ1),γo(ρ1)})∩(Γ(ρ2)\
{γi(ρ2),γo(ρ2)}) �= /0, we have to duplicate every shared gate ∀g ∈ Γ1,2 and every com-
mon signal ∀s ∈ Σ(ρ1)∩Σ(ρ2).

4 Experiments

We tested our approach on two asynchronous queues from the libraries of the Liber-
outer project—namely, asfifo-bram and asfifo-dist. Each of the components uses
a different type of memory and has a slightly different control part. For asfifo-bram,
we checked the property that the control part does not allow to rewrite unread data with
new data. For asfifo-dist, we checked that the component correctly sets the so-called
status data on its output which informs about the saturation of the queue.

Table 1. Verification results

case vars no. time mem

asfifo-bram-no-check 36 4.83 s 132607
asfifo-bram-all-gates 220 inf. inf.
asfifo-bram-destabil 44 37.52 s 2446796
asfifo-dist-no-check 44 4550.07 s 9861121
asfifo-dist-all-gates 48 30556.7 s 25878822

Table 1 shows results of
our experiments. Suffixes in
the first column mean the fol-
lowing: (i) no-check is the
case when no extension is per-
formed, (ii) all-gates is the
case when all critical gates are
extended, (iii) destabil means
that destabilizers are used in-
stead of extending all the gates.
Column vars no. gives the number of binary state variables, time is the verification time,
and mem is the number of allocated BDD nodes.

There are eight critical signal paths in asfifo-bram and two critical paths in asfi-
fo-dist. We can see from the number of state variables in asfifo-bram that there are
many critical gates to extend when extending all critical gates (the number of state vari-
ables increases to 220) whereas the destabilizer-based approach found only two places
for a destabilizer (which rapidly decreases the extensions needed). For asfifo-dist,
we can see a big difference in time and the number of BDD nodes used for a slight dif-
ference in the number of state variables. Such a contrast is caused by the nondetermin-

164 A. Smrčka et al.

ism in the model—one random value {0,1} divides the further state-space exploration
into two directions (the first for value 0, the second for 1).

5 Conclusion

We have introduced two original approaches to modelling asynchronous hardware de-
signs using the input language of the commonly employed Cadence SMV model
checker. One of these approaches is quite precise, but may contribute to the state ex-
plosion problem in a significant way. The other approach can be much more efficient
as it is based on an overapproximation of the reachable states. The approach is, how-
ever, still precise enough to allow one to prove interesting properties on various real-life
hardware designs as we have illustrated by our experiments. Both of these methods may
be modified to be used together with a different model checker than Cadence SMV and
represent a contribution to the state-of-the-art in verifying hardware designs by allowing
one to deal with asynchronous circuits.

References

1. P. Rashinka et al. System-on-a-chip Verification. Methodology & Techniques. Kluwer, 2001.
2. R.K. Brayton et al. VIS: A System for Verification and Synthesis. In Proc. of CAV’96,

LNCS 1102, 1996. Springer.
3. Mentor Graphics. Leonardo Synthesis, 2005.
4. Mentor Graphics. 0-In Formal Verification Data Sheet, 2006.
5. Mentor Graphics. Formal Pro Data Sheet, 2006.
6. J. Holeček, T. Kratochvı́la, V. Řehák, D. Šafránek, and P. Simeček. Verification Process of

Hardware Design in Liberouter Project. Technical Report 5/2004, CESNET, 2004.
7. J. Kořenek, T. Pečenka, and M. Žádnı́k. NetFlow Probe Intended for High-Speed Networks.

In Proc. of FPL’05. IEEE Computer Society, 2005.
8. J. Kořenek, P. Zemčı́k, and T. Martı́nek. FPGA-Based Platform for Network Applications.

In Proc. of DDECS’05. University of West Hungary, 2005.
9. T. Kratochvı́la, V. Řehák, and D. Šafránek. Formal Verification of a FIFO Component in

Design of Network Monitoring Hardware. In Proc. of CESNET 2006 Conference, 2006.
10. Liberouter Project Homepage. http://www.liberouter.org.
11. T. Ly, N. Hand, and Ch. Ka kei Kwok. Formally Verifying Clock Domain Crossing Jitter

Using Assertion-Based Verification. In Proc of DVCon’04, 2004.
12. P. Matoušek, A. Smrčka, and T. Vojnar. Modeling, Analysis, and Verification of SCAMPI2.

Technical Report 8/2005, CESNET, 2005.
13. K.L. McMillan. Cadence SMV Manual, 2006.
14. J. F. Wakerly. Digital Design: Principles and Practices. Prentice-Hall, 3rd edition, 2001.

Verified Design of an Automated Parking Garage

Aad Mathijssen and A. Johannes Pretorius

Department of Mathematics and Computer Science
Technische Universiteit Eindhoven

P.O. Box 513, 5600 MB Eindhoven, The Netherlands
{a.h.j.mathijssen,a.j.pretorius}@tue.nl

Abstract. Parking garages that stow and retrieve cars automatically
are becoming viable solutions for parking shortages. However, these are
complex systems and a number of severe incidents involving such garages
have been reported. Many of these are related to safety issues in soft-
ware. We apply verification techniques to develop a software design for
an automated parking garage. This design meets a number of safety re-
quirements. We provide a software architecture that allows one to split
implementation, safety and algorithmic aspects of the software. Conse-
quently, we give a high-level description of the safety aspects and verify
a number of safety requirements on this model. Also, we briefly discuss
how this analysis is simplified by using a custom visualization tool.

1 Introduction

Many large cities cope with parking shortages. Traditionally, this has been dealt
with by building parking garages below street level or by erecting multi-storey
parking arcades. However, large parts of the floor area cannot be used for parking
since driving lanes need to be provided. Automated parking garages do not
require drivers to park their cars themselves. Instead, cars are placed into parking
spaces fully automatically, using a combination of hardware and software. The
area needed by such placement mechanisms is usually much less than that needed
for driving lanes. This drastically increases parking capacity. Apart from being
space efficient, automated parking garages often serve as status symbols for
companies or city councils.

Automated parking garages are complex systems. This is reflected by their
complex hardware. It is even more evident if one considers some of the incidents
involving such systems [1]. These range from users obtaining the wrong car,
or no car at all, to cars and equipment being reduced to rubble. The latter is a
so-called safety issue: the system causes irrecoverable damage to cars or to itself.

In this article we treat safety aspects involved in the software design of a
typical automated parking garage. By the time that we were consulted, the
hardware design of the investigated system had been finalized. As a result, it
is completely fixed and far from optimal regarding safety. This puts an extra
burden on the software. Unfortunately, this seems to be a frequent mind-set when
designing integrated systems: “don’t worry, we’ll make it work with software”.

L. Brim et al. (Eds.): FMICS and PDMC 2006, LNCS 4346, pp. 165–180, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

166 A. Mathijssen and A.J. Pretorius

The approach we take is to obtain a high-level behavioural description of the
system. Safety requirements are verified on each state of this model. By identify-
ing violations of the requirements, we are able to discover shortcomings and im-
prove our specification to ensure safety. Process algebras are well suited for such
verified design. We use the new mCRL2 language and toolset [2,3,4] to describe
system behaviour and to verify requirements. mCRL2 succeeds and extends
μCRL [5,6] with which a number of complex systems have been analysed [7,8,9].

In Sect. 2 we describe the automated parking garage in more detail. Based
on this description, we define our goals in Sect. 3. In Sect. 4 we discuss how we
conceptually divide the system software into three layers: a hardware abstraction
layer, a safety layer and a logical layer. This allows us to concentrate on the safety
layer, which we argue is essential for ensuring that the system is safe. In Sect. 5,
we describe the design of the safety layer. We follow this with a discussion of
implementation issues in Sect. 6. We also describe a simple visualization plug-in
for the mCRL2 toolset and the insights we gained by using it. We conclude in
Sect. 7.

2 Operational Description

The garage we consider was commissioned by property developers and its hard-
ware designed by a company specialising in automated parking systems. It is
due to be installed below street level in the basement of an existing building.

Access to the garage is provided by a vertical lift shaft with a door at street
level. A single car can be driven into the lift through this door. When the driver
and passengers have exited the car and the lift, the car is automatically lowered
to an intermediate level, rotated 180◦ horizontally, lowered to the basement and
stowed using a number of conveyor belts and shuttles. To retrieve a car, the
same system of conveyor belts and shuttles is used to bring the car to the lift
with which it is raised to street level. Since the car had been rotated before, it
now faces the street.

The system provides a number of security and safety checks during check-in
and check-out of a car. This includes reading a transponder card and checking
a database of registered users before opening the lift door. As the car is driven
into the lift, the driver is provided with cues to ensure a correct positioning.
There is also a check to ensure that the handbrake is engaged. Before lowering
the car to the basement, the lift is scanned to ensure that there are no living
beings present.

In the remainder of this article, we consciously abstract from hardware details.
We also restrict ourselves to the vertical lift and the basement level parking
garage. We do not consider the mechanisms put in place for regulating traffic
outside the lift, correctly positioning the car in the lift, or cues to enter and leave
the lift. We do this to tightly draw the bounds of our scope. It also allows us to
focus on the most important safety aspects of the system.

We assume the operation of the system is initiated every time a car is posi-
tioned appropriately in the lift at street level or when a request for retrieving

Verified Design of an Automated Parking Garage 167

a car is received. The lift can be in one of three vertical positions: street level,
rotation level or basement level. At rotation level, the lift is able to rotate 180◦

horizontally, provided that there are no cars positioned immediately adjacent to
the lift shaft (on either side) at basement level. The floor of the lift consists of
a conveyor belt. When the lift is at the basement level this conveyor belt is able
to move sideways (see the description below). The most complex and interesting
part of the system is the basement level. Here the movement of cars is facilitated
by a number of conveyor belts and shuttles. This is illustrated in the floor plan
of the basement in Fig. 1.

Fig. 1. Floor plan of the parking garage, basement level

As shown in Fig.1, the garage is divided into three rows (r1, r2 and r3) and ten
columns (c1–c10). Conveyor belts are represented by grey rectangles with arrows
on their ends and are identified by labels such as b r1a sh. The arrows indicate
their direction of movement. Columns c1 and c10 contain three shuttles each. In
each of these columns one shuttle may be tilted upwards on its long end facing
the wall. This results in an open position to which adjacent lowered shuttles may
be moved. A tilted shuttle may also move to a new row position behind lowered
shuttles (this implies that it is possible for two shuttles to be in the same row
and column position, provided that one is tilted and the other lowered). Black
arrows indicate the directions in which shuttles can move. Similar to the lift,
every shuttle contains a conveyor belt that can move sideways.

The lift shaft is in row r1. Notice that it is not placed over a full position,
but intersects two columns (c6 and c7). This is due to the construction of the
building in which the garage is to be installed (and beyond the control of the
engineers who designed the parking installation). More importantly, this implies
that it must be possible to move cars half-column distances in the first row. For

168 A. Mathijssen and A.J. Pretorius

this reason, every column in row r1 is also divided into an a (left) and b (right)
part as indicated by the dashed lines in Fig. 1. We use this same convention in
naming the conveyor belts. Hence, b r1a sh refers to the conveyor belt of the
shuttle on the left-hand side of row r1, and so forth.

It is possible for adjacent conveyor belts to move simultaneously to function
as a single larger conveyor belt. For instance, b r3a sh and b r3 can be moved in
unison. The system hardware can determine whether any (half-)position is free
or occupied. For any column in r1, it is possible to determine the status of its a
(left) and b (right) part. It is possible to determine whether there is a lowered,
a tilted or no shuttle at all in any row of c1 and c10. Furthermore, the current
height of the lift and its status (free or occupied) can be determined.

3 Problem Description

We have mentioned that hardware design is outside the scope of this article. It is
also not our goal to develop algorithms. Instead, our aim is to provide specialists
in algorithm design with an interface to an abstraction of the underlying hard-
ware that guarantees the safe and correct operation of the system. This provides
a clear separation of concerns.

Placement and retrieval algorithms need to ensure that cars are efficiently
stowed and retrieved in a fashion that resembles a large sliding puzzle. Even if
these algorithms contain errors, the safety interface should not allow the parking
garage or the cars in it to get damaged. It needs to specify the necessary checks
and restrictions that guarantee the execution of only safe or legal moves. For
example, when an algorithm requests that a car be moved to a position that
is already occupied by another car, the safety layer should not allow this. The
safety interface must also be able to report on the success or failure of issued
commands. Properly designed algorithms should be able to respond to such
feedback in an appropriate fashion.

4 Conceptual System Design

We now provide a high-level software design for the automated parking garage.

4.1 Architecture

Our aim is to specify a safety interface that sits between placement and retrieval
algorithms and the abstract hardware of the automated parking garage. This
interface must allow only safe or legal instructions and report on their success
or failure. To achieve this, we introduce a three-layered architecture consisting
of a logical layer (LL), a safety layer (SL) and a hardware abstraction layer
(HAL) (see Fig. 2). With this division into layers, the safety layer ensures the
safe operation of the system independently of the particular algorithms that
are implemented and without being concerned with hardware implementation
issues.

Verified Design of an Automated Parking Garage 169

Fig. 2. Three-layered architecture

Data. The following data are communicated between the layers:

– Event : an event outside the scope of our design that has an impact on the
system. We identify the following events:

• add car : a new car enters the lift.
• remove car : a car is removed from the lift.

– InstructionSet : a set of instructions to be executed concurrently by the HAL.
It consists of a number of elements of type Instruction. The notion of a set
of instructions allows for the execution of multiple instructions that apply to
non-overlapping areas of the basement. For instance, with a single request it
is possible to issue different instructions for moving conveyor belts as long
as the belts in question do not overlap (see next section).

– Instruction: a single instruction that the hardware should execute. Instruc-
tions should be implemented by the HAL (see Sect. 4.2). There are 5 different
instructions:

• move belts(bs: BeltSet, d: Direction, ms: MoveSize): move the set of belts
bs in direction d by a distance of size ms (half or full position).

• move shuttles(shs: ShuttleSet, o: ShuttleOrientation, d: Direction): move
the set of shuttles shs in orientation o (lowered or tilted upwards) in
direction d by a distance of one row interval.

• tilt shuttle(p: ShuttlePosition, o: ShuttleOrientation): lower or tilt the
shuttle in positions p and orientation o to the orientation that is the
opposite of o.

• move lift(h: Height): move the lift to vertical position h.
• rotate lift : rotate the lift 180◦ horizontally.

– Result : indicates whether a set of instructions has been executed successfully
(ok) or whether it has failed (fail).

– GlobalState: the current system state. That is, for every position whether
it is free or occupied (FloorState), for every shuttle whether it is lowered
or tilted upwards (ShuttleState), and for the lift its current vertical position
and also whether it is free or occupied (LiftState).

170 A. Mathijssen and A.J. Pretorius

Interactions. To facilitate communication between the different layers, we in-
troduce the following interactions:

– occur(e: Event): the occurrence of an event e. When the HAL detects e, the
SL is informed by the action occur(e). The SL informs the LL by issuing
a similar occur(e) action. For the sake of design modularity, the LL is not
directly informed by the HAL.

– req(is: InstructionSet): request the execution of instructions is. A request
from the LL to execute instructions is propagated to the HAL via the SL.

– ack req(is: InstructionSet): a signal from the SL that the instructions in is
are safe.

– deny req(is: InstructionSet): a signal from the SL that the instructions in is
are unsafe. The SL makes no subsequent requests to the HAL.

– ack exec(is: InstructionSet, r: Result): the instructions in is have been com-
pleted with result r. The HAL issues an ack exec(is, r) action to the SL.
Consequently, the SL issues this action to the LL.

– req state: request the current global state of the system.
– ack state(gs: GlobalState): communicate the current global state from the

HAL to higher layers. This is done in response to a req state action.

4.2 Hardware Abstraction Layer (HAL)

We assume that the HAL serves as a coherent interface to all individual hardware
components in the garage. The HAL receives requests for sets of instructions
from the SL (action req). For each set of instructions the HAL attempts to
execute the individual instructions and reports back on the result of the attempt
(action ack exec). For the specification of the SL to yield the intended results,
instructions must be implemented correctly by the HAL. We assume that this
is the case. Apart from executing instructions, the HAL also provides the SL
with the current system state before and after issuing any instructions. Such a
system state is constructed by the HAL using sensors that monitor the status
of the conveyor belts, the shuttles and the lift.

4.3 Logical Layer (LL)

The LL allows for the development of algorithms by experts who can plug their
specifications into the SL. These algorithms may contain errors that trigger the
request of unsafe instructions. Due to the safety layer, such requests are harmless
and will be blocked. More concretely, the LL utilises the SL by requesting that
sets of instructions be executed. The SL reports back to the LL in the form of
ack req, deny req and ack exec actions. It also informs the LL of events that have
occurred (a new car to stow or the removal of an existing car). The logical layer
should respond to such feedback appropriately.

4.4 Safety Layer (SL)

The SL sits between the LL and the HAL. It receives requests (req) from the
LL, which it acknowledges (ack req) or denies (deny req), based on whether

Verified Design of an Automated Parking Garage 171

the instruction is safe for the current state. After an acknowledgement is sent,
the request is passed on to the HAL. In other cases the SL passes information
between the HAL and the LL. We treat the SL in more detail in the next section.

5 Verified Design of the Safety Layer

In this section, we identify the safety requirements for the SL and we develop
a specification in mCRL2, for which these should be satisfied. Consequently, we
verify that this is indeed the case. A more detailed account of the analysis can be
found in the corresponding technical report [10]. The full mCRL2 specification
and verification code is also included in the report.

5.1 Informal Requirements

The SL should meet the following safety requirements:

1. Conveyor belts:
(a) When a car is moved from one belt to another, both belts should move

in the same direction.
(b) Cars should never be moved into walls.
(c) Cars should never be moved to a belt that is not available (when a shuttle

is tilted, or when the lift belt is not at the basement level).
2. Shuttles:

(a) Shuttles should never be moved into a wall.
(b) When moving shuttles, no shuttles should be damaged.
(c) When moving shuttles, cars should not be damaged.
(d) When tilting a shuttle, no shuttles should be damaged.
(e) When tilting a shuttle, cars should not be damaged.

3. Lift:
(a) When moving the lift, cars should not be damaged.
(b) When rotating the lift, cars should not be damaged.

5.2 Specification of Data Types

The data types described in Sect. 4.1 can be translated into mCRL2 in a rela-
tively straightforward way:

sort
Instruction = struct move belts(R1BeltSet,DirCol, MoveSize)

| move belts(R2BeltSet,DirCol, MoveSize)
| move belts(R3BeltSet,DirCol, MoveSize)
| move shuttles(ShuttlePosSet,ShuttleOrientation,DirRow)
| tilt shuttle(ShuttlePos,ShuttleOrientation)
| move lift(LiftHeight)
| rotate lift;

InstructionSet = List(Instruction);% representing a set of instructions
Event = struct add car | remove car;
Result = struct ok | fail;
GlobalState = struct glob state(fs : FloorState, shs : ShuttleState, ls : LiftState);

The ambiguity of the definition of Instruction is resolved by the fact that
R1BeltSet, R2BeltSet and R3BeltSet are different types. These types are defined

172 A. Mathijssen and A.J. Pretorius

in fashion similar to the above definition. Note that the data language of mCRL2
is fully higher-order and we use this to implement some data types as functions.
For instance, the datatype FloorState is defined as FloorPos → OccState. That
is, a function from floor positions to occurrence states indicating whether a po-
sition is free or occupied.

Allowed Instruction Sets. The informal requirements introduced in Sect. 5.1
apply to the InstructionSet data type. In our specification of the SL we use an
allowed function on sets of instructions to determine whether they are safe. A
set of instructions is is allowed if:

1. is specifies at least one instruction.
2. The instructions in is do not overlap. That is, the positions on which the

instructions operate are pairwise disjoint. Consequently, it is safe to execute
the instructions in is simultaneously.

3. Each individual instruction in is is allowed.
Formulated in mCRL2:

map
allowed : InstructionSet × GlobalState → Bool;
% allowed(is, gs) indicates if instruction set is is allowed given global state gs
allowed : Instruction × GlobalState → Bool;
% allowed(i, gs) indicates if instruction i is allowed given global state gs
overlap : Instruction × InstructionSet → Bool;
% overlap(i, is) indicates if instruction i overlaps with any of the instructions in is

var
gs : GlobalState;
i, j : Instruction;
is : InstructionSet;

eqn
allowed([], gs) = false;
allowed(i � [], gs) = allowed(i, gs);
allowed(i � j � is, gs) = allowed(i, gs) ∧ ¬overlap(i, j � is) ∧ allowed(j � is, gs);

Here × represents the Cartesian product and � represents the list cons operation.
We are now left with the task of defining the functions overlap and allowed. We
elaborate on the latter, which is the least trivial.

Allowed Instructions. The core of the allowed function on instruction sets
is an allowed function on individual instructions. We describe this function for
every instruction.

move belts(bs: BeltSet, d: Direction, ms: MoveSize) is allowed if:

1. bs contains at least one conveyor belt.
2. All conveyor belts in bs directly border each other (this also implies that

they must be in the same row).
3. All conveyor belts in bs are available (this applies to belts on the lift and on

shuttles).
4. At least one position of size ms (full or half) is free at the end of the set of

belts specified. This free position is on the side indicated by d.
5. If the specified belts are in row r1, there is no car with one half on a belt in

bs and the other half on a neighbouring belt not in bs.

Verified Design of an Automated Parking Garage 173

move shuttles(shs: ShuttleSet, o: ShuttleOrientation, d: Direction) is allowed if:

1. shs contains at least one shuttle.
2. All shuttles in shs border each other (this implies that they are all in column

c1 or c10).
3. All specified shuttles are available in the orientation specified by o (lowered

or tilted).
4. There is an open position at the end of shs in orientation o and direction d.

This ensures that there is an open position for the shuttles to move to.
5. For every lowered r1 shuttle s in shs, there is no car with one half on s and

the other half on a neighbouring belt.

tilt shuttle(p: ShuttlePosition, o: ShuttleOrientation) is allowed if:

1. It is not the case that there is both a lowered and a tilted shuttle at the
position specified by p.

2. If o is lowered, there is no car on the shuttle (fully or partially).

move lift(h: Height) is allowed if:

1. h is not the current height.
2. If the current height is basement level, there are no cars with one half on

the lift and the other half on a neighbouring belt.

rotate lift is allowed if:

1. The lift is at rotation level.
2. Three half-positions on both sides of the lift are free. This prevents cars in

these positions from being damaged by the rotation mechanism.

As an illustrative example of how the allowed function has been formally defined,
we provide its definition for the rotate lift instruction below. The complete formal
specification of the allowed function can be found in [10].

var
fs : FloorState;
shs : ShuttleState;
ls : ListState;

eqn
allowed(rotatelift, globstate(fs, shs, ls)) =

height(ls) ≈ rotate ∧
free([pos r1(c5, pa), pos r1(c5, pb),pos r1(c6, pa),

pos r1(c7, pb),pos r1(c8,pa), pos r1(c8,pb)], fs);

Here ≈ denotes the equality function on data types.

5.3 Specification of Behaviour

For the specification of the behaviour of the SL we note the following:

– At any point in time, the SL processes a single set of instructions. Multiple
sets of instructions would complicate the system without having performance
benefits (instead of buffering instruction sets in the LL, they would also have
to be buffered in the SL).

174 A. Mathijssen and A.J. Pretorius

– We do not take the message passing of the system state or external events
into account, as this does not impact safety.

The interactions of Sect. 4.1 are specified by splitting them into actions repre-
senting the send and receive parts, as illustrated below. The Layer parameters
indicate the sending and receiving layer of the action, respectively.

sort
Layer = struct logical | safety | hardware;

act
snd req, rcv req : Layer × Layer × InstructionSet;
snd ack req, rcv ack req : Layer × Layer × InstructionSet;
snd deny req, rcv deny req : Layer × Layer × InstructionSet;
snd ack exec, rcv ack exec : Layer × Layer × InstructionSet × Result;
snd state, rcv state : Layer × Layer × GlobalState;
snd event, rcv event : Layer × Layer × Event;

Finally, using the actions defined above, the behaviour of the SL is specified as
follows:

sort
ProcState = struct ps idle | ps ack deny | ps req | ps exec | ps ack exec;

proc
SL(ps : ProcState,gs sl : GlobalState, is : InstructionSet, r : Result) =

(ps ≈ ps idle) →
(
�

isa:InstructionSet valid(isa) → rcv req(logical, safety, isa) ·
SL(ps ack deny, gs sl, isa, r)

)
+

(ps ≈ ps ack deny) →
(allowed(is, gs sl) →

(snd ack req(safety, logical, is) · SL(ps req, gs sl, is, r)) �
(snd deny req(safety, logical, is) · SL(ps idle, gs sl, is, r))

)
+

(ps ≈ ps req) →
snd req(safety,hardware, is) · SL(ps exec,gs sl, is, r)

+
(ps ≈ ps exec) →

(
�

ra:Result rcv ack exec(safety,hardware, is, ra) ·
SL(ps ack exec,nextstate(is, ra, gs sl), is, ra)

)
+

(ps ≈ ps ack exec) →
snd ack exec(safety, logical, is, r) · SL(ps idle, gs sl, is, r)

+
(ps ≈ ps idle) →

(
�

e:Event possible(e,gs sl) → rcv event(hardware, safety, e) ·
SL(ps,nextstate(e, gs sl), is, r)

)
;

init
SL(ps idle, init gs, [], ok);

Verified Design of an Automated Parking Garage 175

This specifies a process SL with 4 parameters, representing the current state
of the process (ps) and the garage (gs sl), and the instruction set (is) and
execution result (r) that are to be processed. The behaviour is a collection of
alternatives formed from condition-action-result sequences. A summation over
a data type indicates a choice over all elements of that data type. Finally, we
use three additional functions: valid ensures that the lists we use to model sets
do not contain duplicates, possible indicates whether it is possible for an event
to occur, and nextstate returns the new state of the system. We do not provide
specifications of these functions here.

5.4 Reductions

Due to the enormous number of possible instruction sets that can be requested
and executed, it is impossible to perform simulation, let alone verification, on the
behavioural specification. This section describes a number of reductions we apply
to enable verification. The corresponding specifications can be found in [10].

Reduction 1. Abstract from sets of instructions by focusing on single instruc-
tions only.

On the one hand this abstraction is dangerous, because sets of instructions are
an essential part of the system. On the other hand, the core safety issue lies in
the allowed function applied to single instructions. Furthermore, the number of
possible system configurations remains the same, since the result of executing a
set of instructions concurrently is the same as executing them sequentially. This
implies that in the corresponding state space the number of states remains fixed,
but the number of transitions is reduced substantially.

Although the former reduction makes it possible to perform simulation, it is
not very effective. The aim is to focus on logical mistakes and not hardware
failures. For this reason, we also abstract from non-essential messages.

Reduction 2. Abstract from requests and acknowledgements. It is assumed
that instructions are executed successfully by the HAL.

The state space corresponding to the specification after applying the above re-
ductions is still prohibitively large. It consists of a calculated total of 6.4 × 1011

(640 billion) states, and a multiple of this in transitions. Hence, we apply one
last abstraction.

Reduction 3. The number of positions of the belts is reduced to the minimum
that retains the behavioural characteristics of the original configuration. This
entails the following. The positions on the conveyor belts b r2 and b r3 are
reduced to two positions each (see Fig. 3). Also, belts b r1a and b r1b are reduced
to 1 1

2 full positions (or 3 half positions) each.

The resulting state space has 3.3×106 (3.3 million) states and 9.8×107 (98 mil-
lion) transitions, which existing verification tools can manage. Although strictly
speaking we are not concerned with proving deadlock-free behaviour, we note
that this state space contains no deadlock.

176 A. Mathijssen and A.J. Pretorius

Fig. 3. Reduction of the floor plan

5.5 Formal Requirements and Verification

We verify our safety requirements by extending the specification with error ac-
tions that are only executed when a requirement is violated. Hence, the require-
ments are fulfilled when the state space does not contain any error actions. To
do this, we translate the high-level requirements from Sect. 5.1 to a lower level
of detail. For example, requirement 3(a) is translated to the following.

For all heights h the instruction move lift(h) should not be allowed if both:

1. The lift is at the basement level.
2. The lift contains a car placed halfway on the lift.

This is translated to mCRL2 as the condition-action-result sequence shown be-
low, and is appended to the original specification.

�
i:Instruction,lh:LiftHeight(i ≈ move lift(lh) ∧ valid(i) ∧ allowed(i, gs sl) ∧
ls(gs sl) ≈ ls basement ∧
¬free(positions(b r1lift), fs(gs sl)) ∧
¬(even occ(positions b r1([b r1a sh, b r1a]), fs(gs sl)) ∧

even occ(positions b r1([b r1b,b r1b sh]), fs(gs sl)))
) → error(req3a, 1) · δ

Extra care is taken to specify the enabling conditions of the error actions: the
use of elements of the definition of the allowed function are avoided as much
as possible, since mistakes in the original specification could carry over to the
verification. When we extend the original specification in this fashion, it does
not contain any errors. This means that all the requirements are fulfilled.

We conclude this section with some figures. The complete specification con-
tains 991 lines of mCRL2 code, whereas the verification code contains 217 lines
of mCRL2, amounting to a total of 1208 lines. Verification took 35 hours and 16
minutes on a single PC (3 GHz CPU, 4 GB RAM), and 5 hours and 38 minutes on
a cluster of 34 CPUs (3 GHz CPU, 2 GB RAM). The specification and analysis
of the safety layer required approximately 480 man hours to complete.

6 Discussion

Before we draw conclusions, we elaborate on two issues. We discuss how visu-
alization helped us during the analysis. Also, we mention some issues regarding
the implementation of software based on our specification.

Verified Design of an Automated Parking Garage 177

6.1 Visualization

During specification we often resorted to simulating the behaviour of the system
using the mCRL2 toolset. The simulator tool allows us to quickly and incremen-
tally check whether our specification results in the behaviour we had anticipated.
This is opposed to generating and examining an entire state space which is quite
a time consuming undertaking. However, we soon realised that interpreting the
text-based output of the simulator is arduous, not entirely intuitive, and prone
to human error.

To address these problems and inspired by other visualization initiatives for
systems analysis [11,12], we implemented a very simple visualization tool as a
plug-in to the simulator. This tool receives the current system state from the
simulator and maps it onto a simple 2D floor plan of the parking garage (see
Fig. 4). The visualization uses visual cues to indicate the vertical lift position
and whether a specific position is occupied (red or dark grey), free (green or
medium gray) or unavailable (light gray). Tilted shuttles are also shown. After
selecting a new transition, the visualization is updated and the user is able to
analyse the system using this representation. The plug-in is distributed with the
mCRL2 toolset [4].

(a) Shuttle-induced error

(b) Lift-induced error

Fig. 4. Mistakes identified with the visualization plug-in

Using our visualization tool we discovered a number of problems related to
the fact that cars may be moved by half positions in row r1. For instance, we
moved a car toward the side of the garage and positioned it with one half on
a conveyor belt and one half on a shuttle. To our surprise, it was possible to

178 A. Mathijssen and A.J. Pretorius

subsequently move the shuttle, literally tearing the car in half (see Fig. 4(a))!
This first bug was relatively easy to fix. A similar problem occurred when two
cars were positioned side-by-side on the lift, each with one half on a neighbouring
conveyor belt. In this case, despite our best efforts to explicitly check for such a
situation, it was possible to move the lift upward, tearing two cars in half (see
Fig. 4(b)). This turned out to be a harder problem to solve and involved keeping
track of the number of half-positions occupied in row r1 (see Sect. 5.5).

We found the representation of our visualization tool to be intuitively clear
and easy to understand. We also believe that this mode of analysis saved a great
amount of time. Since we could follow cars as they were transported down the
lift and moved to new positions using the conveyor belts and shuttles, we were
able to construct potentially dangerous scenarios, such as those discussed above
relatively easily. This allowed us to identify and correct a number of problems
early on. These included mistakes on our part as well as unknown complexities
about the system setup. Although all requirements should also be checked during
formal verification, we emphasise that this rests on the assumption that all
relevant questions have been identified and formalised. By visualizing the current
state it is possible to identify issues that may not have been noted otherwise.

6.2 Implementation

As far as software development is concerned, the next step would be to use the
specification of data types and behaviour discussed in this article as a starting
point for an implementation. Moreover, we believe that reuse of the allowed
function is of crucial importance. Should software be designed and implemented
without considering this, we believe that some of the problems we identified
and addressed could easily creep into the implementation despite considerable
precaution on the part of the programmers. Unfortunately, we know of cases
where such an approach was not taken and where both cars and vital equipment
were damaged [1].

Before starting to implement the safety layer, the following aspects require
further investigation:

– We have only formally verified the specification for individual instructions
(see Sect. 5.5). Although we believe that the specification is also correct for
sets of instructions, this cannot be guaranteed.

– We do not distinguish between the occurrence of a recoverable and an unre-
coverable hardware failure. All failures are assumed to be recoverable. Fur-
thermore, execution of a set of instructions only gives one result which holds
for all instructions. For more detailed error handling, the execution of indi-
vidual instructions should also return results. That is, after the execution of
a set of instructions, some elements may return ok while others may return
fail.

– In practice, the events add car and remove car are not atomic. They need
to be split up into a begin and end part. This results in additional safety
requirements. For example, it should be impossible to execute a move lift
instruction between the begin and end part of an event.

Verified Design of an Automated Parking Garage 179

Although we have not investigated the efficiency of the automated parking
garage we foresee a performance challenge in terms of the timely stowing and
recovery of cars in practice.

7 Conclusion

We have described the verified design of an automated parking garage. We pro-
posed a system design consisting of three layers: a logical layer, a safety layer
and a hardware abstraction layer. We have discussed the verified design of the
safety layer. Verification guarantees that in every valid configuration of the sys-
tem, no damage can occur due to the execution of unsafe instructions. We argue
that our work comprises the essence of the system design regarding safety. We
recommend that a future implementation should closely follow this design.

With regard to the analysis process, although formal verification is necessary
to ensure that requirements are never violated, we want to stress that simula-
tion should not be underestimated. All defects in the specification were found
using simulation. Also, simulation allowed us to identify and address interesting
behavioural characteristics that would probably not have been included in the
requirements otherwise. In particular, we found visually supported simulation to
be extremely effective. In this way we were able to gain insight into the system
in a way that goes further than simply listing and verifying requirements.

Finally, in this case study software development only started after the hard-
ware design was finished. We argue that both hardware and software experts
should be involved in the entire design process to ensure that an optimal solu-
tion is found. For this reason, we argue that the current combination of hardware
and software is far from optimal.

Acknowledgements

We thank Bas Ploeger and Muck van Weerdenburg for their input and sugges-
tions. Hannes Pretorius is supported by the Netherlands Foundation for Scientific
Research (NWO) under grant 612.065.410.

References

1. Verdult, E.: In de prak geparkeerd. De Ingenieur 7 (2005) 32–35
2. Groote, J.F., Mathijssen, A., Van Weerdenburg, M., Usenko, Y.S.: From μCRL to

mCRL2: motivation and outline. In: Proc. Workshop on Algebraic Process Calculi:
The First Twenty Five Years and Beyond. BRICS NS-05-3 (2005) 126–131

3. Groote, J.F., Mathijssen, A., Ploeger, B., Reniers, M., Van Weerdenburg, M.,
Van der Wulp, J.: Process algebra and mCRL2, IPA basic course on formal methods
2006. www.mcrl2.org (2006)

4. mCRL2: mCRL2 homepage (2006) www.mcrl2.org.
5. Groote, J.F., Ponse, A.: The syntax and semantics of μCRL. In: Algebra of

Communicating Processes, Workshops in Computing. (1994) 26–62
6. Groote, J.F., Reniers, M.: Algebraic process verification. In: Handbook of Process

Algebra. Elsevier (2001) 1151–1208

180 A. Mathijssen and A.J. Pretorius

7. Fokkink, W., Groote, J.F., Pang, J., Badban, B., Van de Pol, J.: Verifying a sliding
window protocol in μCRL. In: Proc. 10th Int’l Conf. Algebraic Methodology and
Software Technology. Number 3116 in LNCS, Springer (2004) 148–163

8. Groote, J.F., Pang, J., Wouters, A.G.: Analysis of a distributed system for lifting
trucks. J. Logic and Algebraic Programming 55(1–2) (2003) 21–56

9. Pang, J., Fokkink, W., Hofman, R., Veldema, R.: Model checking a cache coherence
protocol for a Java DSM implementation. In: Proc. International Parallel and
Distributed Processing Symposium (IPDPS’03), IEEE CS Press (2003)

10. Mathijssen, A., Pretorius, A.J.: Specification, analysis, and verification of an auto-
mated parking garage. Technical Report 05-25, Technische Universiteit Eindhoven
(2005)

11. Pretorius, A.J., Van Wijk, J.J.: Multidimensional visualization of transition sys-
tems. In: Proc. 9th Int’l Conf. Information Visualization (IV05), IEEE CS Press
(2005) 323–328

12. Van Ham, F., Van de Wetering, H., Van Wijk, J.J.: Interactive visualization
of state transition systems. IEEE Transactions on Visualization and Computer
Graphics 8(4) (2002) 319–329

Evaluating Quality of Service for Service Level
Agreements

Allan Clark and Stephen Gilmore

Laboratory for Foundations of Computer Science, The University of Edinburgh,
Edinburgh, Scotland

Abstract. Quantitative analysis of quality-of-service metrics is an im-
portant tool in early evaluation of service provision. This analysis de-
pends on being able to estimate the average duration of critical activities
used by the service but at the earliest stages of service planning it may
be impossible to obtain accurate estimates of the expected duration of
these activities. We analyse the time-dependent behaviour of an auto-
motive rescue service in the context of uncertainty about durations. We
deploy a distributed computing platform to allow the efficient derivation
of quantitative analysis results across the range of possible values for
assignments of durations to the symbolic rates of our high-level formal
model of the service expressed in a stochastic process algebra.

1 Introduction

Service-oriented computing is an important focus area for industrial computer
systems, highlighting the crucial interplay between service provider and service
consumer. Service-level agreements (SLAs) and service policies are key issues
in this domain. An SLA typically incorporates a time bound and a probability
bound on a particular path through the system. It will make clear the metric
against which the service is being judged, how the service provision will be
measured, and the penalty to be exacted if the service is not delivered with
the agreed level of quality of service (QoS). We are concerned here with the
quantitative core of an SLA and wish to answer formally questions of the form
“Will at least 90% of all requests receive a response within 3 seconds?” which
has as a probability bound “at least 90%”, as a time bound “within 3 seconds”,
and as the path through the system “from request to response”.

An SLA needs to be established in the early specification phase for a commis-
sioned service, and the service provider needs to ensure not later than that point
in time that the SLA is credible. High-level formal modelling is helpful here be-
cause it allows us to pose precise questions about a formal model of the service
to be provided and to answer them using efficient, proven analysis tools [1]. The
difficulty at the early specification phase is to know whether we can match the
quantitative constraints of customers’ requests against the efficiency or perfor-
mance of the implementation of our service. In the early specification phase in
model-driven software development we have no measurement data which we can
use to parameterise our high-level quantitative model (since the implementation

L. Brim et al. (Eds.): FMICS and PDMC 2006, LNCS 4346, pp. 181–194, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

182 A. Clark and S. Gilmore

has not yet been built), leading to uncertainty about the values of the rate con-
stants to be used in the computation of the passage-time quantiles needed to
answer the questions about satisfaction of QoS constraints.

This uncertainty is manageable in practice because although we may not know
precisely the value of the rate constants to be used in the model we may know a
range of values within which they will lie. The problem then is simply to evaluate
our model against our SLA measure a (possibly large) number of times. This can
be done by performing a parameter sweep across the range of possible values for
the rates. If each of these computations leads to the conclusion that the SLA can
be met, then we can accept it even in the presence of uncertainty about the rate
values. However, if any of the computations leads to the conclusion that the SLA
cannot be met, then we must revise the SLA to loosen the time or probability
bounds which it mandates and see if this weaker SLA is still acceptable to the
service consumer. An alternative would be to try to improve some of the rates at
which key activities are performed, in order to fulfil the stricter SLA and avoid
the need to weaken the time or probability bounds. To help with identifying
the key rates in the model we need to investigate the sensitivity of the model
to changes in individual rates. To do this we evaluate our chosen measure for
each rate repeatedly while varying the rate throughout its range of allowable
values. This will allow us to identify those rates which have a major impact on
performance if varied and those rates which impact on performance little.

Specifically, we are addressing in the present paper analysis methods and tools
for the efficient computation of cumulative distribution functions (CDFs) which
decide whether an SLA will be met. Set against this means of evaluating SLAs
by parameter sweep is the cost of the many numerical computations needed to
calculate the many CDFs required. The approach which we follow here is to eval-
uate simultaneously many runs of the Markov chain analyser used. Parameter
sweep is an approach which falls into the class of problems commonly known as
“embarrassingly parallelizable”. That is, there are many independent copies of
the code being run in isolation with none of the complexities of management of
synchronisation points which are usually associated with parallel codes. In this
setting a simple approach based on a network of workstations architecture will
be effective in delivering the computational effort needed.

We used the Condor [2] high-throughput computing platform to distribute the
necessary SLA computation across many hosts. Condor is a widely-used long-
standing workload management system. A recent paper presenting the key ideas
is [3].

We model our service in the PEPA process algebra [4]. Our models are com-
piled into stochastic Petri nets by the Imperial PEPA Compiler, ipc, and these
are analysed by the Hydra release of the DNAmaca Markov chain analyser [5], a
state-of-the-art stochastic Petri net tool which computes the passage-time quan-
tiles needed in the computation of a CDF used in the evaluation of an SLA.

PEPA models submitted to ipc must be Cyclic PEPA [6], formed by the
composition of co-operating sequential components. Each of the sequential com-
ponents at the leaves of the process tree is viewed as a finite state automaton

Evaluating Quality of Service for Service Level Agreements 183

with timed Markovian transitions and converted into a Petri net state machine.
ipc then recurses back up the process tree composing these nets until it has
produced a single net representing the complete PEPA model.

2 Related Work

Our use of Hydra on a distributed workload management system such as Condor
is different in nature from previous work on using Hydra on distributed-memory
parallel machines (examples include [7]) and distributed compute clusters (ex-
amples include [8]). One difference is that we initiate our Hydra execution from
a PEPA model, via ipc, and are therefore using Markovian modelling exclusively
([8] addresses semi-Markov models). In work such as [7], [8] and [9] the emphasis
is on grande modelling, where detailed models of systems are evaluated in the
setting of many component replications. Due to the multitude of possible inter-
leavings of the local states of each of these subcomponents it is not uncommon
for such grande modelling to give rise to statespaces of order 106 [8], 107 [7],
108 [9], or 109 [10]. Although such sizes might seem modest if compared to the
sizes of models analysed by non-quantitative procedures these dimensions place
these analysis problems on the edge of tractability for Markovian analysis.

In contrast to the above, the style of modelling which we are using here is
diminutive. Most nodes in our Condor cluster are typical desktop Pentium 4
PCs, with 1 CPU and with 1Gb of RAM. Each of these must be able to solve
our modelling problem independently. The difference is that the prior work cited
above is solving very large models a relatively small number of times whereas
we are solving relatively small models a very large number of times.

An alternative method of answering the same question about SLAs would be
first to encode the statement of the QoS measure as a formula in Continuous
Stochastic Logic (CSL) [11] and then to model-check the formula against the
PEPA model using the PRISM probabilistic symbolic model checker [12]. Com-
putationally, this solution procedure would be very similar to the method which
we employ, using uniformisation [13,14] to compute the transient analysis result
needed from the continuous-time Markov chain representation underlying the
PEPA model.

While this approach would have been successful for solving one run of the
numerical computing procedure required we believe that we would have found
difficulty in hosting multiple runs of PRISM on the Condor platform. As a batch
processing system Condor has a notion of execution context called a universe.
The ipc and Hydra modelling tools which we used run as native executables in
Condor’s vanilla universe. Java applications run on Condor’s java universe
(developed in [15]). However, PRISM combines both Java code and native C
code in its use of the CUDD binary decision diagram library [16] via the Java
Native Interface. The general approach to running Java code with JNI calls under
Condor would be to execute the JVM under the vanilla universe because the
java universe cannot guarantee to provide necessary libraries for the native code
part of PRISM. However, this would in general require first copying the JVM
binary onto the remote machine before execution of PRISM could begin. This

184 A. Clark and S. Gilmore

would impose a heavy penalty on run-time which would offset significantly the
advantages to be gained from Condor-based distribution.

3 Markovian Process Algebras

Markovian process algebras such as PEPA extend classical process algebras by
associating an exponentially-distributed random variable with each activity rep-
resenting the average rate at which this activity can be performed. The random
variable X is said to have an exponential distribution with parameter λ (λ > 0)
if it has the distribution function

F (x) =
{

1 − e−λx for x > 0
0 for x ≤ 0

The mean, or expected value, of this exponential distribution is

μ = E[X] =
∫ ∞

−∞
xλe−λxdx =

1
λ

An activity in a PEPA model takes the form (α, λ).P (“perform activity α at
exponentially-distributed rate λ and behave as process P”). The high-level ex-
pression of the model includes a symbolic rate variable λ. The model is evaluated
against a valuation which assigns numerical values to all of the symbolic rates
of the model.

All activities in a PEPA model are timed, and via the structured operational
semantics of the language, PEPA models give rise to continuous-time, finite-state
stochastic processes called Continuous-Time Markov Chains (CTMCs).

The relationship between the process algebra model and the CTMC represen-
tation is the following. The process terms (Pi) reachable from the initial state of
the PEPA model by applying the operational semantics of the language form the
states of the CTMC (Xi). For every set of labelled transitions between states Pi

and Pj of the model {(α1, r1), . . . , (αn, rn)} add a transition with rate r between
Xi and Xj where r is the sum of r1, . . . , rn. The activity labels (αi) are necessary
at the process algebra level in order to enforce synchronisation points, but are
no longer needed at the Markov chain level.

A CTMC can be represented by a set of states X and a transition rate matrix
R. The matrix entry in position rij is λ if it is possible for the CTMC to transition
from state i to state j at rate λ. An infinitesimal generator matrix Q is formed
from the transition rate matrix by normalising the diagonal elements to ensure
that each row sums to zero. The generator matrix is usually sparse.

3.1 Transient Analysis and Uniformisation

Investigation of SLAs requires the transient analysis of a CTMC. That is, we
are concerned with finding the transient state probability row vector π(t) =
[π0(t), . . . , πn−1(t)] where πi(t) denotes the probability that the CTMC is in

Evaluating Quality of Service for Service Level Agreements 185

state i at time t. Transient and passage-time analysis of CTMCs proceeds by
uniformisation [13,14]. The generator matrix, Q, is “uniformized” with:

P = Q/q + I

where q > maxi |Qii|. This process transforms a CTMC into one in which all
states have the same mean holding time 1/q.

Passage-time computation is concerned with knowing the probability of reach-
ing a designated target state from a designated source state. It rests on two key
sub-computations. First, the time to complete n hops (n = 1, 2, 3, . . .), which is
an Erlang distribution with parameters n and q. Second, the probability that
the transition between source and target states occurs in exactly n hops.

3.2 Model Checking

A widely-used logic for model checking properties against continuous-time
Markov chains is Continuous Stochastic Logic (CSL) [11]. The well-formed for-
mulae of CSL are made up of state formulae φ and path formulae ψ. The syntax
of CSL is below.

φ ::= true | false | a | φ ∧ φ | φ ∨ φ | ¬φ | P��p[ψ] | S��p[φ]
ψ ::= Xφ | φ UI φ | φ U φ

where a is an atomic proposition, �� ∈ { <, ≤, >, ≥ } is a relational parameter,
p ∈ [0, 1] is a probability, and I is an interval of R. Derived logical operators
such as implication (⇒) can be encoded in the usual way.

Paths of interest through the states of the model are characterised by the path
formulae specified by P . Path formulae either refer to the next state (using the
X operator), or record that one proposition is always satisfied until another is
achieved (the until-formulae use the U-operator).

Performance information is encoded into the CSL formulae via the time-
bounded until operator (UI) and the steady-state operator, S. The evaluation
of time-bounded until formulae against a CTMC in a CSL-based model checker
such as PRISM [12] or MRMC [17] proceeds by transient analysis using uni-
formisation and a numerical procedure such as the Fox-Glynn algorithm [18].

3.3 Sensitivity Analysis

Due to the roles which activities play in creating the dynamics of our stochastic
process algebra model it may be that increasing the rate of one activity increases
the score obtained by the model on our chosen performance measure of interest.
Conversely, increasing the rate of another activity may decrease the score which
we get. Changing one rate a little may vary the score a lot. Changing another
rate a lot might only vary the score a little. The study of how changes in perfor-
mance depend on changes in parameter values in this way is known as sensitivity
analysis.

Our main aim here is to determine that our SLA is met across all of the
possible combinations of average values of rates across all their allowable ranges.

186 A. Clark and S. Gilmore

However, by collecting the results where one rate is varied we can examine the
sensitivity of our measure with respect to that rate, at no added computational
cost.

The practical relevance of sensitivity analysis is that we may find that the
model is relatively insensitive to changes in one of the rates. In this case we need
not spend as much effort in trying to determine precisely the exact average value
of this rate. This effort would be better directed to determining the values of
rates for which the model has been shown to be sensitive. Further, sensitivity
analysis will identify the most critical areas to improve if failing to meet an SLA.

4 Case Study: Automotive Crash Scenario

Our case study concerns the assessment of an SLA offered by an automotive col-
lision support service. The scenario with which these systems are concerned is
road traffic accidents and dispatch of medical assistance to crash victims. Drivers
wishing to use the service must have in-car GPS location tracking devices with
communication capabilities and have pre-registered their mobile phone informa-
tion with the service.

The scenario under study considers the following sequence of events.

– A road traffic accident occurs. The car airbag deploys.
– Deployment of the air bag causes the on-board safety system to report the

car’s current location (obtained by GPS) to a pre-established accident report
endpoint.

– The service at the reporting endpoint attempts to call the registered driver’s
mobile phone.

– If there is no answer to the call then medical assistance is dispatched to the
reported location of the car (presuming that the driver has been incapaci-
tated by injuries sustained in the accident).

There may be many possible reasons why the driver does not answer the phone.
The phone may be turned off; its battery may be flat; the phone may be out of
network range; the driver may have switched to a new telephone provider, and
not informed the collision support service; the phone may not be in the car; it
may have been smashed on impact; or many other possibilities.

The accident reporting service cannot know the exact reason why the driver
does not answer the phone. They only know that an accident has happened which
was serious enough to cause the airbag to be deployed, and that the driver has
not confirmed that they do not need medical assistance. In this setting they will
dispatch medical help (even if sometimes this will mean that help is sent when
it is not absolutely necessary).

The SLA related to this scenario concerns the response time of the passage
from the deployment of the airbag to the dispatch of medical assistance. The
parameters of our modelling study are:

– the rate at which information on the location of the car—and any other
pertinent information such as speed on impact, engine status, and other

Evaluating Quality of Service for Service Level Agreements 187

diagnostic information obtained from the on-board diagnostic systems and
controllers—can be reported to the accident reporting service;

– the time taken to confirm that the driver is not answering their mobile
telephone; and

– the time taken to contact the emergency services to dispatch medical assis-
tance.

None of these parameters are known exactly, but their average values are known
to lie within a range of acceptable operation. We are, of course, interested in
worst case bounds on passage-time quantiles and also in best case analysis but
also in the variety of possible responses in between.

4.1 PEPA Model

In this section we consider the sequence of events which begins with the deploy-
ment of the airbag after the crash and finishes with the dispatch of the medical
response team. The first phase of the sequence is concerned with relaying the
information to the remote service, reporting the accident. When the diagnostic
report from the car is received the service processes the report and matches it
to the driver information stored on their database.

Car 1
def= (airbag , r1).Car 2

Car 2
def= (reportToService , r2).Car 3

Car 3
def= (processReport , r3).Car 4

The second phase of this passage through the system focuses on the attempted
dialogue between the service and the registered driver of the car. We consider
the case where the driver does not answer the incoming call because this is the
case which leads to the medical response team being sent.

Car4
def= (callDriversPhone , r4).Car 5

Car5
def= (timeoutDriversPhone, r5).Car 6

The service makes a final check on the execution of the procedure before the
decision is taken to send medical help. At this stage the driver is awaiting rescue.

Car 6
def= (rescue, r6).Car 7

Car 7
def= (awaitRescue, r7).Car 1

This takes us to the end of the passage of interest through the system behaviour.

4.2 Rates Constants and Ranges

All timings are expressed in minutes, because that is an appropriate granularity
for the events which are being modelled. Thus a rate of 1.0 means that something
happens once a minute (on average). A rate of 6.0 means that the associated
activity happens six times a minute on average, or that its mean or expected
duration is ten seconds, which is an equivalent statement. A table of the ranges
of average rate values used appears in Table 1.

188 A. Clark and S. Gilmore

4.3 Sensitivity Analysis for the Automotive Crash Scenario

We consider how the cumulative distribution function for the passage from airbag
deployment to dispatch of medical assistance is affected as the values of the rates
r2 to r6 are varied as specified in Table 1. The results are presented in Figure 1.

Table 1. Minimum and maximum values of the rates from the model

Value
Rate min max Meaning
r1 600.0 600.0 an airbag deploys in 1/10 of a second
r2 2.0 10.0 the car can transmit location data in 6 to 30 seconds
r3 0.5 1.5 it takes about one minute to register the incoming data
r4 1.5 2.5 it takes about thirty seconds to call the driver’s phone
r5 1.0 60.0 give the driver from a second to one minute to answer
r6 0.25 3.0 vary about one minute to decide to dispatch medical help
r7 1.0 1.0 arbitrary value — the driver is now awaiting rescue

What we see from these results is that variations in upstream rates (near the
start of the passage of interest) such as r2, r3 and r4 have less impact overall
than variations in downstream rates (near the end of the passage of interest)
such as r5 and r6. This is true even when the scale over which the upstream
rates are varied is much more than the scale over which the downstream rates
are varied (for example, contrast variation in r2 against variation in r6).

The conclusion to be drawn from such an observation is that, if failing to meet
a desired QoS specified in an SLA then it is better to expend effort in making
a faster decision to dispatch medical help (governed by rate r6) than to expend
effort in trying to transmit location data faster (governed by rate r2), over the
range of variability in the rates considered in the present study.

Another use of this sensitivity data would be to find an optimum time to hold
while waiting for the driver to answer the phone. The optimisation problem to
be solved here is to decide how long to wait before terminating the call in case of
non-answer. If the service providers wait too long then they risk failing to meet
their SLA. If they wait too little then they risk dispatching medical assistance
when it is not actually necessary. In this case the sensitivity graph of rate r5
shows a portion where changes in rate value have little impact and so targeting
the lowest rate here gives the driver more time to answer the phone.

A further kind of graph which can be drawn is depicted in Figure 2. To
produce this graph we have held constant the time and varied two of the rates
involved, r5 and r6. From this kind of graph one can analyse how the probability
of completion by a chosen time bound can depend on the relationship between
two of the rates. In this graph we can see that when the rate r5 is low, as in
the front line of the graph, then varying the rate r6 has little effect. However
the back line of the graph shows that when rate r5 is high, varying rate r6 has
a greater effect.

Evaluating Quality of Service for Service Level Agreements 189

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
 0

 0.2
 0.4
 0.6
 0.8

 1

Pr

Sensitivity of cumulative distribution function to r2

r2

Time

Pr

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.4 0.6 0.8 1 1.2 1.4 1.6 0
 1 2 3 4 5 6 7 8 9 10

 0
 0.2
 0.4
 0.6
 0.8

 1

Pr

Sensitivity of cumulative distribution function to r3

r3

Time

Pr

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.4 1.6 1.8 2 2.2 2.4 2.6 0
 1 2 3 4 5 6 7 8 9 10

 0
 0.2
 0.4
 0.6
 0.8

 1

Pr

Sensitivity of cumulative distribution function to r4

r4

Time

Pr

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 0 1 2 3 4 5 6 7 8 9 10
 0

 0.2
 0.4
 0.6
 0.8

 1

Pr

Sensitivity of cumulative distribution function to r5

r5

Time

Pr

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3 0 1 2 3 4 5 6 7 8 9 10
 0

 0.2
 0.4
 0.6
 0.8

 1

Pr

Sensitivity of cumulative distribution function to r6

r6

Time

Pr

Fig. 1. Graphs of cumulative distribution function sensitivity to changes in rates for
the passage from airbag deployment to dispatch of medical assistance

The reverse relationship between rates r5 and r6 is also true. The model
we used was a linear model, which means that there were few paths through
the model. In particular the action rescue governed by the rate r6 cannot be
performed until the action timeoutDriversPhone , regulated by rate r5, has oc-
curred. Also once the timeoutDriversPhone action has occurred there is nowhere
for the model to go but to a rescue action. This means that if either of the two
rates associated with these two actions is very low, then that action will be
the bottleneck for that part of the model. Varying the other rate will have less
effect.

190 A. Clark and S. Gilmore

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 0
 0.5

 1
 1.5

 2
 2.5

 3
 0

 0.2
 0.4
 0.6
 0.8

 1

Pr

Dependency of probability on the values of r5 and r6

r6

r5

Pr

Fig. 2. Graph of probability of completion against variation in the rates r5 and r6, for
a fixed time value

5 Relation to Model Checking

In this section we consider how the results expressed above relate to model
checking a CSL formula against our model of the system. Expressed as a CSL
formula an example of the kind of question which we are asking is the following.

airbag ⇒ P>0.9[true U[0,10] rescue]

In words, this says “If the airbag in the car deploys, is it true with probability
at least 0.9 that the rescue service will be sent within 10 minutes?”

We consider a more general form of the question which is the following

airbag ⇒ P��p[true U[0,10] rescue]

We consider this for all relations �� ∈ { <, ≤, >, ≥ } and for all values of the
probability bound 0 ≤ p ≤ 1. Further, we answer these general formulae not
for only a single assignment of values to symbolic rate variables (as would be
the case for conventional model checking) but across the range of assignments
presented in Figure 1.

In order to determine upper and lower bounds on the probability with which
the rescue service is dispatched within 10 minutes we can simply plot the proba-
bility computed via transient analysis against experiment number. Each mapping
of rate values onto symbolic rate names is an experiment.

The graph of computed probability against experiment number for the first
fifty experiments is shown in Figure 3. Experiments are grouped whereby a group
contains about five evaluations of the CDF corresponding to the SLA for five
assignments of concrete rate values to one of the symbolic rates r2 to r6. This
shows slightly more than the first eight groups of experiments.

Evaluating Quality of Service for Service Level Agreements 191

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50

P
r

Experiment number

Probability of completion by time 10.0 for first 50 experiments

Fig. 3. Graph of probability of completing the passage from airbag deployment to
medical assistance dispatch within ten minutes plotted against experiment number
over the first fifty experiments

The graph of computed probability against experiment number for all the 3750
experiments is shown in Figure 4. At this level of granularity it is not easy to
pick out groups of runs but one can see that all experiments achieve at least
a minimum QoS that at least 83% of calls to the service will lead to medical
assistance being dispatched within 10 minutes.

One use of these graphs is to identify all of the combinations of average rate
values which allow the service to satisfy an SLA which requires their quality
of service to be above a specific threshold. For example, say that the service
providers wish to, or need to, meet the SLA that the rescue service is dispatched
within 10 minutes in 92% of cases of airbag deployment. The graph in Figure 4
identifies all of the combinations of parameter values which achieve this bound,
or do better. Some of these might be much easier to realise than others so the
service could meet its QoS requirement by striving for those combinations of
average rates for individual actions of the system such as taking the decision to
dispatch medical help (at rate r6).

6 Further Work

Our future programme of work on using ipc and Hydra on the Condor distributed
computing platform is directed towards making better use of the support which
Condor provides for distributed computing. This will include the use of the
standard universe which will allow checkpointing within a run, and allow a
long-running Hydra computation to be migrated in-run from a machine claimed
by a user onto a presently-idle machine.

192 A. Clark and S. Gilmore

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 500 1000 1500 2000 2500 3000 3500 4000

P
r

Experiment number

Probability of completion by time 10.0 against experiment number

Fig. 4. Graph of probability of completing the passage from airbag deployment to
medical assistance dispatch within ten minutes plotted against experiment number
over all 3750 experiments

In this work we have made the conceptually convenient simplification of think-
ing of Hydra as a single, indivisible application which accepts a stochastic Petri
net as input and returns as its output a CDF showing passage-time quantiles.
While this is an accurate conceptual description Hydra is in fact structured as a
collection of independent components (a parser, a state-space generator, a func-
tional analyser, a solver and a uniformiser). The application which we think of as
Hydra is a high-level driver executing these components in the order described
above.

The opportunity which this gives us for the future is to structure Hydra as
a directed acyclic graph (DAG) of component tasks. To run Hydra on Condor
in this way we would specify the inputs and outputs from each sub-component
(state-space generator, functional analyser and others) and connect these to-
gether replacing Hydra’s top-level driver with the appropriate use of Condor’s
DAG manager (DAGman). This would offer a greater range of possibilities for
component deployment on our Condor pool.

7 Conclusions

The automotive rescue case study used in this paper gives rise to a relatively
small continuous-time Markov chain, the unit solution cost of which is not exces-
sive. However, when repeatedly re-running this solution procedure for different
parameter values these small costs quickly start to add up. The Condor dis-
tributed computing system allowed us to execute these many copies of the job
simultaneously.

Evaluating Quality of Service for Service Level Agreements 193

The parallel structure of the joint computation was very simple; running a
sequential application multiple times. No dynamic process creation was required
within an individual run, and no inter-process communication was needed. A
full-blown parallel computing infrastructure such as PVM or MPI would have
been excessive but Condor suited our problem very well.

The style of analysis which we pursue here is embarrassingly parallelizable,
meaning that the throughput of jobs increases linearly with the number of ma-
chines available. This means that if given access to a larger Condor pool, or the
ability to connect Condor pools together, then the rate at which jobs can be
processed continues to grow and is not capped by an inherent bound on prob-
lem scalability. Thus the combination of ipc, Hydra and Condor as a modelling
and experimentation framework provides a strong platform on which to conduct
larger and more complex experiments.

Acknowledgements

The authors are supported by the SENSORIA project (EU FET-IST Global
Computing 2 project 016004). We are grateful to Angelika Zobel and Nora Koch
of F.A.S.T. München for the specification of the automotive case study. We
modified the open-source software tool ipc developed and made freely available
by Jeremy Bradley. We ran our models on the Condor cluster provided in the
School of Informatics at Edinburgh and benefited from advice from Chris Cooke
on using this effectively.

References

1. William J Knottenbelt. Generalised Markovian analysis of timed transition sys-
tems. MSc thesis, University of Cape Town, South Africa, July 1996.

2. Condor project homepage. Website with documentation and software, University
of Wisconsin-Madison, April 2006. http://www.cs.wisc.edu/condor/.

3. Douglas Thain, Todd Tannenbaum, and Miron Livny. Distributed computing in
practice: the Condor experience. Concurrency - Practice and Experience, 17(2-
4):323–356, 2005.

4. J. Hillston. A Compositional Approach to Performance Modelling. Cambridge
University Press, 1996.

5. J.T. Bradley and W.J. Knottenbelt. The ipc/HYDRA tool chain for the analysis
of PEPA models. In Proc. 1st International Conference on the Quantitative Evalu-
ation of Systems (QEST 2004), pages 334–335, Enschede, Netherlands, September
2004.

6. J. Hillston and M. Ribaudo. Stochastic process algebras: a new approach to per-
formance modeling. In K. Bagchi and G. Zobrist, editors, Modeling and Simulation
of Advanced Computer Systems. Gordon Breach, 1998.

7. Nicholas J Dingle, Peter G Harrison, and William J Knottenbelt. Uniformization
and hypergraph partitioning for the distributed computation of response time den-
sities in very large Markov models. Journal of Parallel and Distributed Computing,
64:908–920, 2004.

http://www.cs.wisc.edu/condor/

194 A. Clark and S. Gilmore

8. Jeremy T Bradley, Nicholas J Dingle, Peter G Harrison, and William J Knot-
tenbelt. Distributed computation of passage time quantiles and transient state
distributions in large semi-Markov models. In Performance Modelling, Evalua-
tion and Optimization of Parallel and Distributed Systems, Nice, April 2003. IEEE
Computer Society Press.

9. W J Knottenbelt, P G Harrison, M S Mestern, and P S Kritzinger. A probabilis-
tic dynamic technique for the distributed generation of very large state spaces.
Performance Evaluation, 39(1–4):127–148, February 2000.

10. R. Mehmood and Jon Crowcroft. Parallel iterative solution method for large sparse
linear equation systems. Technical Report UCAM-CL-TR-650, Computer Labora-
tory, University of Cambridge, UK, October 2005.

11. A. Aziz, K. Sanwal, V. Singhal, and R. Brayton. Verifying continuous time Markov
chains. In Computer-Aided Verification, volume 1102 of LNCS, pages 169–276.
Springer-Verlag, 1996.

12. M. Kwiatkowska, G. Norman, and D. Parker. PRISM: Probabilistic symbolic model
checker. In A.J. Field and P.G. Harrison, editors, Proceedings of the 12th Interna-
tional Conference on Modelling Tools and Techniques for Computer and Communi-
cation System Performance Evaluation, number 2324 in Lecture Notes in Computer
Science, pages 200–204, London, UK, April 2002. Springer-Verlag.

13. W. Grassmann. Transient solutions in Markovian queueing systems. Computers
and Operations Research, 4:47–53, 1977.

14. D. Gross and D.R. Miller. The randomization technique as a modelling tool and
solution procedure for transient Markov processes. Operations Research, 32:343–
361, 1984.

15. Al Globus, Eric Langhirt, Miron Livny, Ravishankar Ramamurthy, Marvin
Solomon, and Steve Traugott. JavaGenes and Condor: Cycle-scavenging genetic
algorithms. In Proceedings of the ACM Conference on Java Grande, pages 134–139,
San Francisco, CA, 2000.

16. F. Somenzi. CUDD: CU Decision Diagram Package. Department of Electrical and
Computer Engineering, University of Colorado at Boulder, February 2001.

17. J.-P. Katoen, M. Khattri, and I. S. Zapreev. A Markov reward model checker.
In Proceedings of the Second International conference Quantitative Evaluation of
Systems (QEST), pages 243–244. IEEE CS Press, 2005.

18. Bennett L. Fox and Peter W. Glynn. Computing Poisson probabilities. Commu-
nications of the ACM, 31:440–445, 1988.

Simulation-Based Performance Analysis of a
Medical Image-Processing Architecture

P.J.L. Cuijpers1 and A.V. Fyukov2

1 Technische Universiteit Eindhoven
Den Dolech 2, 5600 MB Eindhoven, The Netherlands

2 Philips Research
Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands

Abstract. In this paper, we show a simulation method for performance
prediction of medical image processing chains, based on the real-time
calculus of [9]. In particular, we focus on estimating the latency and
throughput of a given image processing chain and its distribution over
hardware resources. The architectural level of abstraction of the real-time
calculus approach makes our method flexible, so that different design
decisions can be studied using similar models. The choice for simulation
rather than the usual algebraic analysis of real-time calculus equations,
gives us the possibility to include a number of performance relevant im-
plementation details in our models for which analytical estimates are not
available.

1 Introduction

In the field of medical imaging systems, a great variety of consumers exist, lead-
ing to a great variety of requirements, features, and budget. As a consequence,
architects of medical image processing systems have to make the tradeoff between
general purpose hardware, in order to gain flexibility in cost and functionality,
and dedicated hardware, in order to gain high performance in terms of through-
put and latency. Furthermore, although the physics behind the imaging is dif-
ferent for each product, the image processing is often similar. This means that
the aforementioned tradeoff has to be made over and over again, for products
that have a comparable software architecture.

In this paper, we model a core part of the architecture of image processing
systems, the image transfer engine. This engine is designed to handle the passing
of image data between both general purpose and dedicated hardware resources.
It takes a so-called image processing graph (see Figure 1 in section 2) as input.
This graph depicts the order in which an image is processed by several algorithms
and depicts which algorithms run on which processing units. The engine then
distributes the execution of image processing algorithms according to this graph.

The goal of our case study, is to develop a method for predicting the throughput
and latency of a given image processing graph when implemented using the image
processing engine. Previously, we developed an (unpublished) analytic formula,
based on the work of [7], giving a quick, but rough, best-case analysis of latency

L. Brim et al. (Eds.): FMICS and PDMC 2006, LNCS 4346, pp. 195–210, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

196 P.J.L. Cuijpers and A.V. Fyukov

and throughput. This formula was used to eliminate infeasible image processing
graphs in an early design phase. The simulation method presented in this paper
serves as a follow-up analysis, and gives a more accurate estimate by taking a num-
ber of performance relevant implementation details of the engine into account.
Whenever possible, we keep an architectural level of abstraction in our models
and, as a result, performance estimates for large image processing graphs (for ex-
ample 10 algorithms over 16 resources) can be made with a relatively low effort.
Even when the modeling is done by hand, performance estimates can be made in
a couple of hours, provided the right measurements are already available.

As a mathematical formalism underlying our simulations, we choose the real-
time calculus of [9]. This formalism is based on the network calculus of [3].
To the best of our knowledge, simulation of real-time calculus formulas has
not been used in industrial case studies before. We are aware of a number of
studies in which performance bounds were estimated algebraically using real-
time calculus (see for example [8,10]), but this analysis is not possible on our
models due to a number of implementation details in the engine. For example,
the engine splits images into image parts, and processes those image parts as
separate entities (see section 2). In real-time calculus, it is difficult to perform
an algebraic analysis on the processing of separate entities, since this requires
quantization of data streams, for which no theory is available yet. In comparison,
the analytic estimates of [7,2] were abandoned because they are not suited to
analyze the way in which our engine handles the creation of overlap between
image parts. This creation of overlap is necessary for some image processing
algorithms, and turns out to be expensive in terms of latency when applied at
the wrong point in the image processing graph.

Compared to more established formalisms like timed/colored petri-nets [4] and
queuing theory [5], that are also fit for simulation, real-time calculus has the advan-
tage that it allows an easy description of the preemptive scheduling of resources.
This is relevant, since the engine allows multiple algorithms running on the same
resource in a preemptive way. Another advantage of the real-time calculus ap-
proach, is that it supports the architectural level of abstraction that we are aiming
for. An alternative candidate in this respect, would be to use a language like VHDL,
as in [6].

The remainder of this paper is structured as follows. In section 2, we describe the
generic image processing features of the image transfer engine, and give the real-
time calculus equations that characterize each feature. In section 3, we discuss the
measurements that we used to validate our models and to characterize the indi-
vidual image processing algorithms. Furthermore, we discuss the results of some
of our simulations. In section 4, we discuss our conclusions regarding the applica-
bility of real-time calculus for performance analysis of real-time image processing
graphs through simulation.

2 Modeling the Image Transfer Engine

In this section, we discuss the workings of the image transfer engine, and our real-
time calculus model of it. The first subsection gives an overview of the engine,

Simulation-Based Performance Analysis 197

Input

Noise

Noise

C/B

C/B

Edge

Merge Display
PR1

PR2

PR3

PR2

PR3

PR1

PR4 PR4

Fig. 1. An image processing graph with hardware mapping

the ensuing subsections each discuss one particular factor that plays a role in
determining the throughput and latency of an image processing chain.

2.1 Image Processing Graphs

High throughput in image processing can be achieved by pipelining, i.e. by split-
ting the image processing into several consecutive steps that are executed by
different resources, or by scattering, i.e. by cutting the image into parts which
are processed separately on different resources. A third option is parallel process-
ing, which means that the image processing is split into several synchronous steps
that are later combined to form the final image. The difference between scatter-
ing and parallel processing, is that with scattering the image is divided into parts
that are all processed in the same way, while with parallel processing the image
is processed as a whole by different algorithms. Often scattering requires some
redundancy in the computations and data transfer, because the separate image
parts need to overlap, while parallel processing is in turn harder to implement,
and very much depends on the kind of processing that is desired. Incidentally,
the creation of overlap gives rise to additional latency, as we will see further on
in this section. The various ways of image processing lead to the intuitive notion
of viewing an image processing chain as a graph in which:

– Nodes represent basic image processing algorithms, and are labeled with the
resource on which the algorithm runs;

– Edges represent communication lines in a pipeline. Depending on the nodes
they connect, different kinds of communication (shared memory, LAN, etc.)
may be implied;

– Multiple edges model parallel processing of an image by different subgraphs;
– A fan of edges (decorated by an arc) models a scattering of image parts over

a number of (identical) subgraphs.

Figure 2 shows a (simplified) BNF-definition of our image processing graphs, as
it is used by the image processing engine.

An example of an image processing graph is depicted in Figure 1. This graph
shows how resource PR1 takes an image stream from the network (Input) and
performs a (2-)scattered execution of a noise-reduction algorithm (Noise) and
a contrast/brightness algorithm (C/B), running on resources PR2 and PR3. In

198 P.J.L. Cuijpers and A.V. Fyukov

<Graph> ::= {<Node>} ; A graph is a collection of nodes
<Node> ::= Node Begin

Label <String> ; Name of the node
Resource <String> ; Name of the targeted resource
Algorithm <String> ; Name of the algorithm
Overlap <Int> ; Necessary amount of overlap
Input {<Port>} ; Sync. input from 0 or more ports
Output {<Port>} ; Sync. output to 0 or more ports
End Node

<Port> ::= {<String>} ; Each port scatters or gathers 0 or
; more nodes, represented by their labels

Fig. 2. BNF definition of an image processing graph

parallel, there is an edge-detection algorithm (Edge), running on resource PR1.
The result is synchronized using a merge algorithm (Merge) and displayed on a
screen (Display), using resource PR4.

What is missing in the image processing graphs, is how the distribution of a
resource over multiple algorithms is scheduled. For example, one might want to
give the input node of the graph higher priority than all other nodes to prevent
the loss of images, while all other nodes have equal priority with respect to each
other. Whether this is a good choice is still a subject of debate, and the decisions
made in our image processing engine are temporary in that respect. Therefore,
we allow different kinds of scheduling in our model.

Summarizing, we recognize the following factors to influence the performance
of an image processing graph.

– Basic image processing algorithms
– Pipelining
– Parallel processing and synchronization
– Scattering and gathering
– Overlap creation
– Connections between resources
– Resource scheduling

In the remainder of this section, we will treat each of these factors separately. We
give constitutive equations for each of the factors, and combine these equations
into a model for the image processing graph as a whole.

2.2 Basic Image Processing Algorithms

The starting point of real-time calculus, is to consider cumulative request streams
R(t) [pixel] and cumulative resource streams C(t) [operations] in a system. In our
case study, the request stream models the total number of image parts that has
passed through a certain part of the graph at a certain time, while the resource
stream models the total amount of processing power that has been offered by
the individual resources. An image processing algorithm is represented by an

Simulation-Based Performance Analysis 199

αR

C

C′

R′
R′(t) = minu≤t

�
R(u) + 1

α
(C(t) − C(u))

�
C′(t) = C(t) − αR′(t)

= maxu≤t {C(u) − αR(u)}

Fig. 3. Basic processing in Real-time Calculus

t

R,C

0 t0

R,C

Fig. 4. Example of a data flow (left) and a quantized data flow (right)

abstract processing unit that describes how a cumulative input stream R(t) and
a cumulative resource stream C(t) are transformed into a cumulative output
stream R′(t) and cumulative stream C′(t) of unused resources. In our model, this
transformation is based on the (constant) weight α [operations

pixel] of the algorithm,
representing the amount of resources that is needed to process one image pixel.
For each algorithm, we then find the constitutive equations given in figure 3.
These equations are adapted from [9].

The equations express that, in an interval [u, t], the number of processed re-
quests is limited by the amount of resources C(t) − C(u) that arrives in this
interval. Furthermore, by taking u = t, we see that this number can never ex-
ceed the total number of requests R(t) at time t. Conversely, the number of
unused resources can be found by subtracting what is used, αR′(t), from what
is delivered, C(t). Note, that these equations are only valid if we assume that
requests are buffered and that processing power is the dominating resource. Fur-
thermore, the factor α suggests that the resource usage is independent of the
content of the data and linear in its size. This assumption, however, is only es-
sential for the analytic treatment of the equations. In our simulations, α does

200 P.J.L. Cuijpers and A.V. Fyukov

not have to be constant. A movie with changing image content may for example
be reflected by a change in α over time.

An example of a data flow that results from the real-time calculus equations,
has been depicted in the left graph of Figure 4. We have taken a steady stream
of requests R(t) = t and a delayed stream of resources C(t) = max(3t − 6, 0) for
this example.

The smallest data unit that occurs in our image transfer engine is known as
an image part. Image parts still contain many pixels, and the size S [pixel] of an
image is always a multiple of the size s [pixel] of an image part. Usually, whenever
an image part is completely processed by an image processing algorithm, the
engine will transfer that part to the next algorithm. In our model, this requires
quantizing of the data. Both the input image stream and the output image
stream of an algorithm should be quantized to fit the packet-size at the input and
output. In order to be generic, we use si [pixel] for the packet-size at the input
and so [pixel] for the packet-size at the output. Usually, we will have si = so = s,
but when an algorithm reads or writes for example a complete image at a time,
these values may change. For the quantized model of an algorithm we find the
following equations. Note, that by writing down these equations, we leave the
domain for which analytic results are available.

R′(t) = so

�
min
u≤t

�
si

so

�
R(u)

si

�
+

1
αso

(C(t) − C(u))
��

C′(t) = max
u≤t

�
C(u) − αsi

�
R(u)

si

��

In the right graph of Figure 4 we have shown graphically how the quantization
affects the data flow. As input we have taken R(t) = �t� and C(t) = max(3t−6, 0).

Some image processing algorithms allow for a division of an image into parts
only if the parts have sufficient overlap. The overlap is discarded by the algorithm
after processing, which complicates the equations further, because the amount
of pixels that leave the algorithm is smaller than the amount of pixels that enter
it. Furthermore, overlap may be cumulative, which means that if two algorithms
are processing images after each other, the first algorithm will have to process
the overlap for the second algorithm as if it was a real part of the image. Conse-
quently, the influence of the overlap needed for an algorithm can be accounted for
in the value of α, while the cumulative overlap cannot. In our equations we take
oi to be the overlap at the input and oo ≤ oi to be the overlap at the output of an
algorithm. The difference oo−oi then gives us the overlap that is discarded by the
algorithm after processing. Note, that the package size increases with the added
overlap, and that the overlap is 0 whenever the package size is that of an image
rather than that of an image part. The basic model of an image processing algo-
rithm as we’ll use it in the remainder of this paper, is then given by the following
equations.

Simulation-Based Performance Analysis 201

R′(t) = (so + oo)
�
min
u≤t

�
si + oo

so + oo

�
R(u)

si + oi

�
+

1
α(so + oo)

(C(t) − C(u))
��

C′(t) = max
u≤t

�
C(u) − α(si + oo)

�
R(u)

si + oi

��

2.3 Pipelining, Parallel Processing and Synchronization

Suppose we have two image processing algorithms, 0 and 1. For each of the
algorithms we have the equations that were developed in the previous paragraph.
On top of that, the algorithms may be combined in one or more ways, depending
on the way in which they interact. The easiest interaction is when the output of
process 0 serves as input for process 1 (or vice versa). Algebraically, this gives
us the additional equation:

R1(t) = R′
0(t).

When two algorithms are executed in parallel, their inputs are equal.

R(t) = R0(t) = R1(t).

Furthermore, their outputs need to be synchronized in some way. Abstracting
from the precise way in which this is done, we may assume that the synchroniza-
tion depends on data from both algorithm 0 and algorithm 1. So, only image
parts that have been processed by both can be processed by the synchronization.
Hence, synchronization can be modeled using a minimum operation. The output
R′(t) of the synchronized algorithms becomes:

R′(t) = min
�
R′

0(t), R
′
1(t)
�

Note, that for these equations to hold, we need to assume that algorithms process
their data in the order in which they receive it.

2.4 Scattering and Gathering

As we discussed before, it is possible to distribute the processing of an image
over multiple processors by splitting the image into parts. Our engine uses round-
robin scheduling for this. In terms of real-time calculus, distribution leads to a
division on the input signal. Furthermore, round-robin distribution leads to a
bias on the signal, depending on the input rank. Assuming that the incoming
image stream R(t) is quantized into parts of size s with overlap o, a scattering to
n processes Ri(t), with 0 ≤ i < n, we obtain the following family of equations:

Ri(t) = (s + o)
�

R(t) + (n − i)(s + o)
n(s + o)

�

On the outgoing streams, addition can be used to model the gathering of im-
age parts. Round-robin gathering assures that image parts exit the system in the

202 P.J.L. Cuijpers and A.V. Fyukov

same order as in which they arrived. Round-robin gathering can be modeled
using an addition in which each outgoing stream synchronizes with the previous
one, while the first outgoing stream synchronizes with a biased version of the
last one.

R′(t) = min {R0(t),Rn−1(t) + s + o} +
�

1≤i<n

min {Ri(t), Ri−1(t)}

As with parallel processing, this still assumes that the individual algorithms
process the requests in the order in which they arrive.

2.5 Overlap Creation

In subsection 2.2 we saw that the basic algorithms can only decrease the amount
of overlap on an image part. When, at some point in the image processing graph,
the amount of overlap needs to increase, the image transfer engine makes use of
so-called temporal overlap. In other words, the processing of a part is delayed
until a second part arrives, from which the desired overlap may be constructed.
In practice, outer parts of an image have only half the overlap compared to
the other parts. This fact is ignored in our modeling of basic image processing
algorithms, because there it only has a small effect on the total computation
times. However, in the case of temporal overlap, the difference between inner
and outer parts is relevant because the last part of an image does not need to
be delayed. Given an input stream R(t), an image size S, an image part size s,
input overlap oi and output overlap oo ≥ oi, we obtain the following formula for
the output stream R′(t).

R′(t) = (s + oo)max
��

R(t)
(s + oi)

− 1
�

,
S

s

�
sR(t)

S(s + oi)

��

The effect of this formula is depicted graphically in Figure 5. As one can see in
this figure, the arriving image parts are delayed except for the last image part,
and the total output is greater than the input due to the creation of redundant
data.

t0

R

Fig. 5. Example of temporal overlap creation (4 image parts per image)

Simulation-Based Performance Analysis 203

Send Connection Receive
Sender Connection Receiver

Fig. 6. A subgraph modeling a connection between resources

2.6 Connections Between Resources

If two algorithms run on the same resource they can communicate, for example,
through shared memory. This takes a negligible amount of time compared to the
actual image processing, so that the models for pipelining, parallel processing
and scattering presented earlier are valid. When communication takes place over,
for example, a network connection, we need to model the bandwidth and latency
characteristics of this communication medium. Furthermore, the communication
may even put an additional load on the sending and receiving resources as well.

To take the influence of connections between resources into account, we simply
add the subgraph depicted in Figure 6 at every place in the graph where a
connection is necessary according to hardware mapping. Figure 6 depicts the
way in which a connection can be treated as a series of three algorithms. The
first and the last algorithm model the added resource load due to the connection,
the second algorithm, which has its own private resource, models the bandwidth
and latency of the connection itself. Note, that we assume here that the same
connection is never used twice. If that happens, this can of course be modeled
by sharing the relevant resources.

2.7 Resource Scheduling

In this subsection, we focus on the scheduling of resources. Whenever there are
multiple algorithms running on the same resource, the basic models of these
algorithms need to be connected. Suppose that algorithm 0 and algorithm 1 run
on the same resource. Then, we can schedule them by either giving one priority
over the other, or by giving them equal priority.

Scheduling, in our system, is always preemptive. This means that resources
that are left unused by one algorithm can always be used by another algorithm
that runs on the same resource. In the case that algorithm 0 has priority over
algorithm 1, this leads to the following equation.

C1(t) = C′
0(t).

And symmetrically for the case where 1 obtains priority over 0.
When algorithm 0 and 1 have equal priority, we need a more elaborate schedul-

ing method. The equations need to split a continuous resource stream, so we
cannot use the round-robin method that we applied when scattering images.
Furthermore, the equations need to take into account which of the algorithms
need resources at all. If, for example, algorithm 0 does not need any resources,
then algorithm 1 should be provided with the full amount. Whether an algorithm
needs resources is easy to see by subtracting the output from the input. This

204 P.J.L. Cuijpers and A.V. Fyukov

difference gives us the amount of buffering in the process. Of course, one needs to
take differences due to overlap into account in this comparison, so an algorithm
needs resources (has a non-empty buffer) whenever R(t)

s+oi
> R′(t)

s+oo
. The scheduling

of a resource C over n algorithms Ci, with 0 ≤ i < n is then described using the
following equations, in which C(t) is assumed to be (piece-wise) differentiable.

∂

∂t
Ci(t) =

�	

0 ; Ri(t)
s+oi,i

= R′
i(t)

s+oo,i

X(t) ; Ri(t)
s+oi,i

>
R′

i(t)
s+oo,i

X(t) =
1

�
0≤j<n

�	

0 ; Rj(t)
s+oi,i

=
R′

j(t)
s+oo,i

1 ; Rj(t)
s+oi,i

>
R′

j(t)
s+oo,i

∂

∂t
C(t)

Note that the assumption that C(t) is piece-wise differentiable is fair. We usually
use a ramp-function (C(t) = C · t) to model a processing resource, and the
processing algorithms turn a piece-wise differentiable function C(t) into a piece-
wise differentiable function C′(t), as long as the request stream R(t) is piece-wise
continuous.

3 Results

In this section, we discuss the measurements that were carried out on an actual
implementation of the image processing engine to validate our model, and to
establish the parameters necessary for simulation. Furthermore, we show the
outcome of a simulation of the example graph of Figure 1, and discuss the insights
we obtained about the engine through our simulations.

3.1 Measurements

Measurements on an actual implementation of the image processing engine were
needed for two reasons. Firstly, to obtain parameters for the individual algo-
rithms to use in the simulations described in the next subsection, and secondly,
to validate the assumptions that were made while modeling the system. For
those measurements, the setup depicted in figure 7 was used. The Source and
Sink algorithm were equipped with a time-stamping mechanism to be able to
measure latency and throughput with an accuracy in the order of milliseconds.

Note, that the parameter α, the processing per pixel of an algorithm, cannot
be measured directly. It can be derived from measuring the maximum throughput
achieved by an algorithm, using the following relation:

α =
C

S · T ,

where α [operations
pixel] is the weight of the algorithm, C [operations

sec] is the processor
speed, S [pixel

image] is the image size and T [images
sec] is the measured maximum

throughput of the algorithm. Note, that this formula assumes a 100% utilization,

Simulation-Based Performance Analysis 205

Source Algorithm Sink
PR1 PR1 PR1

Fig. 7. Measurement setup

which was obtained by running the algorithms in isolation. Any deviations due
to interference with the Source and Sink that were running on a second processor
turned out to be negligible.

To summarize, we made the following assumptions during our modeling:

– Resource usage depends linearly on the size of the image.
By changing the size of the images, the image parts and the overlap, we con-
firmed that the relation between data size and resource usages is linear with
10% accuracy. Note, however, that our graphs consisted mainly of filtering
algorithms. Algorithms for image compression, for example, may not fit this
assumption. In that case, the modeling of α needs to be extended.

– Resource usage is independent of the image content.
Unfortunately, we have not been able to verify the content independence us-
ing measurements. At the time of our research, no Source capable of produc-
ing different images was available. Independency of the filtering algorithms
was concluded from the way they are implemented. Still, if content depen-
dent algorithms are introduced, a time-dependent α could be used to reflect
the changing of content.

– Processing power is the dominant resource.
When there are no feedback loops, the assumption that processing power
is the dominant resource coincides with the statement that the latency of
an algorithm equals the reciprocal of the throughput. Note, that to vali-
date this, we can correct for the processing time of Sink and Source using
measurements on a void algorithm. For the majority of the algorithms, the
difference between the latency measurements and the predictions based on
throughput was within 10%. Two algorithms deviated more severely. One of
those is a very fast algorithm, for which the throughput measurements were
probably inaccurate. The other is suspected of having an internal feedback
loop, but more elaborate measurements or investigations into the code are
needed to verify this.

– Image parts do not overtake each other during processing in a node.
This was one of the functional requirements of the image transfer engine.

3.2 Simulations

The models we have discussed form a mixed set of max-plus and differential
equations. For the simulation of such a mixed system, Matlab/Simulink offers
only one possible simulation method: fixed step Euler integration. This method is
very stable, but slow when high accuracy is needed. For our purposes it sufficed,

206 P.J.L. Cuijpers and A.V. Fyukov

1R1

C′
1

C1

R′
1

2
R2

C2

C′
2

R′
2

Fig. 8. Algebraic Loop

since the accuracy of the measurements on which we based our parameters was
a more limiting factor than simulation accuracy.

The most important problem with our simulations, was the possibility of
algebraic loops. When, for example, the first process (1) in a pipeline has low
priority, and second process (2) has high priority on the same processor, we get
the situation as in figure 8. The value of R2 depends on the value of R′

1, which
in turn depends on the value of C1, which depends on the value of C′

2, which
depends on the value of R2. Such a recursive situation cannot be simulated in
Matlab/Simulink without introducing a small delay between C′

2 and C1, which
causes additional inaccuracies and in general may lead to wrong solutions. We
have not found a convincing solution for this problem yet. One alternative could
be to solve the equations numerically using, for example, Mathematica. But when
trying this we encountered the problem that the numerical methods available
to us gave wrong estimates of the minima, unless they were fed with suitable
initial points to start their search. Since the Matlab/Simulink approach gave
satisfactory solutions for our models, we decided to stick to that approach.

As an example of our simulations, we will discuss the outcome of a simulation
of the example graph in Figure 1. The simulations have been carried out us-
ing Matlab/Simulink [1], a well-known simulation tool for engineering purposes.
Each of the equations of section 2 has been modeled as a signal-processing block
in Simulink, and those blocks have been tied together according to the image
processing graph. The building of the Simulink model from an image processing
graph was not done automatically. However, it was built by following the pro-
cedure by which the engine implements the image processing graph. Therefore,
we expect that it can be automated in the future if the need arises. To give the
reader an impression of the resulting Simulink model, we have depicted it in fig-
ure 9. The greyed boxes coincide with the elements that also occur in the original
image processing graph, the white boxes were added to model communication
connections, overlap creation, scattering, gathering etc.

In the left part of Figure 10, we have depicted the image streams as they were
measured at several places in our model. Each image is split into ten parts, which
results in an image stream consisting of ten ’steps’. From left to right, we first see
the slightly delayed arrival of parts over the input network. Second, we see the
image stream as it is read by the Input algorithm. Third, we see the image stream
as it has passed from PR1 to PR2. Fourth, we see the image stream after overlap

Simulation-Based Performance Analysis 207

has been created. This stream, which contains bigger parts than the others, was
scaled down to make it easier to see the effect of overlap creation. For example,
one should observe that overlap creation introduces latency in the header-part,
but not in the footer-part of an image. Fifth, we show the image stream after the
Noise and C/B algorithms were applied. Sixth we show the image stream after
the passage from PR2 to PR3 is made, and seventh, we show how the separate
parts are processed for displaying. The maximum horizontal distance between
the incoming image stream and the displayed image stream is the latency of the
total image processing. This gives us one of the two performance parameters
that we are interested in.

The other performance parameter of interest, throughput, can be found by
adapting the framerate and studying both the image stream and the resource
usage. In the right part of Figure 10, we have depicted the resource usage or,
rather, the left-overs of all resources present in the model. Whenever one of
these lines is horizontal, the resource is in use, when the line is rising, there
is an abundance of that particular resource. Resource PR1 can be recognized
because it is the first one to have a horizontal line. That is the resource where
the image processing begins. The two graphics cards of PR2 are loaded in a
similar way, be it with a one-image-part phase difference, and therefore have
similar characteristics in the Figure. PR3 is the last to process an image, and
therefore the last to start rising again.

The resource with the least waste, forms the bottleneck of the system. In our
case, this is PR1. By increasing the framerate, we increase the resource usage.
In the left of Figure 11 we show the image processing at the maximal framerate.
Note, that the tenth image part is finished only after a new image has entered
the pipeline. The middle of Figure 11 shows the resource usage at that framerate,
and shows that the usage of PR1 is at its maximum (viz. a horizontal line).

Fig. 9. Simulink model of the example image processing graph

208 P.J.L. Cuijpers and A.V. Fyukov

0 0.05 0.1 0.15 0.2 0.25

0

10

20

30

40

50

60

70

80

90

100

Time offset: 0

t0

R

0 0.05 0.1 0.15 0.2 0.25

0

20

40

60

80

100

120

140

t0

C

Fig. 10. Simulation of an image stream (left) and resource stream (right), with 10
parts per image

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0

50

100

150

200

250

300

350

400

450

500

t0

R

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0

50

100

150

200

250

300

350

t0

C

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

200

400

600

800

1000

1200

1400

t0

R

Fig. 11. Simulation of an image stream (left) and resource stream (middle), at full
load, and an image stream (right), when overloaded

The right of Figure 11 illustrates how the image processing streams become
divergent if the framerate is increased above the maximum load of the system.
The divergence occurs at the end of the image processing stream, where the fast
results of the upper stream (Noise and C/B) are combined with the results of
the overloaded lower stream (Edge).

Although the image processing graph of figure 1 is only a simple example,
we have made simulations of image processing graphs of much greater complex-
ity with relative ease. Regrettably, we cannot show the results of these due to
industrial confidentiality, but the graphs are similar in character. Furthermore,
comparison with actual implementations of the graphs showed an accuracy of
our predictions of 10-20%.

Simulation-Based Performance Analysis 209

4 Conclusions

In this paper, we have shown a simulation method for performance prediction
of medical image processing chains. Using the real-time calculus modeling par-
adigm, we found max-plus and differential equations that describe the dynamic
behavior of image processing. Using Matlab/Simulink we found numerical so-
lutions of those equations. We chose real-time calculus as a paradigm because
it allows easy modeling of preemptive scheduling techniques, and chose simula-
tion because the standard algebraic analysis of real-time calculus did not fit the
intricacies of our image transfer engine. To calibrate our models, we character-
ized each of the image processing algorithms by a single value, obtained through
throughput measurements on the algorithms in isolation.

As a first conclusion, we find the presented simulation method to be suitable
for performance predictions of medical image processing chains, especially when
implementation details need to be included in the model. Simulation seems to
be most suitable in the later stages of the design phase, when modeling is used
to optimize the image processing graphs and scheduling strategies. In an early
design phase, it is hard to determine how much detail is needed to make accu-
rate predictions. Admittedly, we were lucky to find that the image processing
algorithms in our case studies were all content independent and linear in their
resource use. This might be a consequence of the type of medical imaging on
which we were working and is, of course, not true for general image processing.
Compression algorithms, and some de-noising algorithms, are infamous for their
content dependence, for example. Still, we are convinced that it is possible to
account for non-linearities and dependencies, by making the factor α dependent
on time and image size. As a matter of future research, we are planning to use a
similar simulation approach for the modeling of a more complex architecture, in
which image processing is only a part of the desired functionality. There, content
independence must certainly be abandoned.

A second conclusion, is that a simulation model gives new insights in the
workings of a system. It allows estimates of values that are hard to measure in
practice. In section 3, we have seen estimates of resource consumption and of
latencies half way down the image processing graph. Using these estimates we
found that the performance decreases due to a low bandwidth or high processing
time is amplified by the creation of overlap. Based on this insight, a change in the
engine was proposed so that overlap creation can be more flexibly positioned.
This change is expected to result in a latency decrease of a few milliseconds.
Additionally, the estimates gave insight in resource load balancing, on which
alternative image processing graphs were based. If these insights had to be ob-
tained from measurements, instrumentation of the code would have been neces-
sary, which influences the systems performance. Simulation models give insight
in the behavior of a system without making such changes.

Acknowledgments. We would like to thank Henk Obbink and Jan Friso Groote
for their feedback, and Stichting Toegepaste Wetenschappen (Grant EWI.4877)
for funding this project.

210 P.J.L. Cuijpers and A.V. Fyukov

References

1. Matlab/Simulink. http://www.mathworks.com.
2. D.T. Altilar and Y. Paker. Optimal scheduling algorithm for parallel video process-

ing. In The 1998 International Conference on Multimedia Computing and Systems,
pages 245–248, Austin, Texas, USA, June 1998.

3. J-Y. Le Boudec and P. Thiran. Network Calculus: A Theory of Deterministic Queu-
ing Systems for the Internet, volume 2050 of Lecture Notes in Computer Science.
Springer, Berlin, 2001.

4. K. Jensen. Coloured Petri nets: basic concepts, analysis methods and practical use.
Springer, Berlin, 1992-1997.

5. L. Kleinrock. Queuing systems, Volume 1: theory. John Wiley, New York, 1975.
6. P. Schwarz and U. Donath. Simulation-based performance analysis of distributed

systems. In International Workshop Parallel and Distributed Real-Time Systems,
pages 244–249, Geneva, Switzerland, 1997.

7. J. Subhlok and G. Vondran. Optimal latency-throughput tradeoffs for data par-
allel pipelines. In Eighth Annual ACM Symposium on Parallel Algorithms and
Architectures, pages 62–71, Padua, Italy, June 1996.

8. L. Thiele, S. Chakraborty, M. Gries, and S. Künzli. A framework for evaluating
design tradeoffs in packet processing architectures. In DAC ’02: Proceedings of the
39th conference on Design automation, pages 880–885, New York, NY, USA, 2002.
ACM Press.

9. L. Thiele, S. Chakraborty, and M. Naedele. Real-time calculus for scheduling
hard real-time systems. In Proc. IEEE International Symposium on Circuits and
Systems (ISCAS), volume 4, pages 101–104, 2000.

10. E. Wandeler, L. Thiele, M. Verhoef, and P. Lieverse. System architecture evaluation
using modular performance analysis - a case study. In 1st International Symposium
on Leveraging Applications of Formal Methods (ISoLA), 2004.

Blasting Linux Code�

Jan Tobias Mühlberg and Gerald Lüttgen

Department of Computer Science, University of York, York YO10 5DD, U.K.
{muehlber,luettgen}@cs.york.ac.uk

Abstract. Computer programs can only run reliably if the underlying
operating system is free of errors. In this paper we evaluate, from a
practitioner’s point of view, the utility of the popular software model
checker Blast for revealing errors in Linux kernel code. The emphasis is
on important errors related to memory safety in and locking behaviour
of device drivers. Our conducted case studies show that, while Blast’s
abstraction and refinement techniques are efficient and powerful, the tool
has deficiencies regarding usability and support for analysing pointers,
which are likely to prevent kernel developers from using it.

1 Introduction

Today’s application software critically depends on the reliability, safety and secu-
rity of the underlying operating system (OS). However, due to their complicated
task of managing a system’s physical resources, OSs are difficult to develop and
even more difficult to debug. Quite frequently major errors stay undiscovered
until they are exploited in security attacks or are found "by accident".

In recent years, automatic approaches to discover OS bugs via runtime checks
or source code analysis have been explored. Despite the fact that many of these
approaches do not focus on an exhaustive analysis, they still helped developers
to detect hundreds of safety problems in the Linux and BSD OS kernels. Most
of the programming errors found were either related to memory safety or in-
correct locking behaviour [6]. Here, "memory safety" typically is interpreted as
the property that an OS component never de-references an invalid pointer, since
this would cause the program to end up in an undefined state. "Correct locking
behaviour" means that functions that ensure mutual exclusion on the physical
resources of a system are called in a way that is free of deadlocks and starvation.
Both classes of problems are traceable by checking whether an OS component
complies with basic usage rules of the program interface provided by the kernel.

Software model checking. By having the potential of being exhaustive and
fully automatic, model checking, in combination with abstraction and refinement,
is a successful technique used in software verification [7]. Intensive research in
this area has resulted in software model checkers like Bandera [9] for Java pro-
grams or SLAM/SDV [1], MAGIC [5] and Blast [16] (Berkeley Lazy Abstraction
Software verification Tool) for analysing C source code. The major advantage
� Research funding was provided by the EPSRC under grant GR/S86211/01.

L. Brim et al. (Eds.): FMICS and PDMC 2006, LNCS 4346, pp. 211–226, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

212 J.T. Mühlberg and G. Lüttgen

of these tools over model-based model checkers such as Spin [17] is their ability
to automatically abstract a model from the source code of a given program.
User interaction should then only be necessary in order to provide the model
checker with a specification, against which the program can be checked. Since
complete formal specifications are not available for most programs, verification
will usually be relative to a partial specification that covers the usage rules of the
Application Program Interface (API) used by the program. However, up to now
all releases of SLAM are restricted to verifying properties for Microsoft Win-
dows device drivers and do not cover memory safety problems [19], while Blast
and MAGIC are able to verify a program against a user defined temporal safety
specification and thus allows checking of arbitrary C source code.

The Blast Toolkit . This popular toolkit implements an advanced abstraction
algorithm,called"lazyabstraction" [15], forbuildingamodelof someCsourcecode,
and model-checking algorithm for checking whether some specified label placed in
the source code is reachable. This label can either be automatically introduced by
instrumentingthesourcewithanexplicit temporal safetyspecification,beaddedvia
assert() statements, or be manually introduced into the source. In any case, the
inputsourcefileneedstobepreprocessedusingastandardCpreprocessorlikegcc. In
this step,allheaderandsourcefiles includedbythe inputfileunderconsiderationare
merged into one file. It is this preprocessed source code that is passed to Blast to
construct and verify a model using predicate abstraction.

This Paper. In this paper we investigate to which extent software model check-
ing as implemented in Blast can aid a practitioner during OS software develop-
ment. To do so, we analyse whether Blast is able to detect errors that have been
reported for recent releases of the Linux kernel. We consider programming errors
related to memory safety (cf. Sec. 3) and locking behaviour (cf. Sec. 4). The code
examples utilised in this paper are taken from releases 2.6.13 and 2.6.14 of the
Linux kernel. They have been carefully chosen by searching the kernel’s change
log for fixed memory problems and fixed deadlock conditions, in a way that the
underlying problems are representative for memory safety and locking behaviour
as well as easily explainable without referring to long source code listings.1 Our
studies use version 2.0 of Blast, which was released in October 2005.

The focus of our work is on showing at what scale a give problem statement
and a program’s source code need to be adapted in order to detect an error.
We discuss how much work is required to find a certain usage rule violation
in a given snippet of a Linux driver, and how difficult this work is to perform
in Blast. Due to space constraints, we cannot present all of our case studies in
full here; however, all files necessary to reproduce our results can be downloaded
from www.cs.york.ac.uk/~muehlber/blast/.

Related Studies with Blast. Blast has been applied for the verification of
memory safety as well as locking properties before [3,13,16,14]. In [3], the use
1 All source code used is either included or referenced by a commit key as provided by

the source code management system git which is used in the Linux kernel community;
see www.kernel.org for further information on git and Linux.

www.cs.york.ac.uk/~muehlber/blast/
www.kernel.org

Blasting Linux Code 213

of CCured [21] in combination with Blast for verifying memory safety of C
source code is explained. This is done by inserting additional runtime checks at
all places in the code where pointers are de-referenced. Blast is then employed
to check whether the introduced code is reachable or can be removed again. The
approach focuses on ensuring that only valid pointers are de-referenced along
the execution of a program, which is taken to mean that pointers must not equal
NULL at any point at which they are de-referenced. However, invalid pointers in
C do not necessarily equal NULL in practise. In contrast to [3], we will interpret
pointer invalidity in a more general way and conduct our studies on real-world
examples rather than constructed examples.

A methodology for verifying and certifying systems code on a simple locking
problem is explained in [16], which deals with the spinlock interface provided by
the Linux kernel. Spinlocks ensure that a kernel process can spin on a CPU with-
out being preempted by another process. The framework studied in [16] is used
to prove that calls of spin_lock() and spin_unlock() in Linux device drivers
always alternate. In contrast to this work, our case studies will be more detailed
and thereby will be providing further insights into the usability of Blast.

2 Programming Errors in OS Code

There is quite a long list of commonly found OS errors. While most of them
mainly affect a system’s safety, others have a security-related background. An
insightful study of OS errors has been published in [6]; see Table 1 for a summary
of its results. The study shows that the majority of programming errors in OS
code can be found in device drivers. Its authors highlight that most errors are
related to problems causing either deadlock conditions or driving the system into
undefined states by de-referencing invalid pointers.

Although memory safety problems have a direct impact on an OS’s reliability,
API rules for OS kernels are usually described in an informal way. For example,
in the Linux device driver handbook [8, p. 61] it is stated that one "should never
pass anything to kfree that was not obtained from kmalloc" since, otherwise, the
system may behave in an undefined way. The functions kmalloc() and kfree()
are kernel-space functions which are used to dynamically allocate and de-allocate
memory, respectively. Another common example are buffer overrun errors, where
data is written beyond the size of an allocated area of memory, thus overwriting
unrelated data.

Correct locking of resources is another major issue causing problems in OS
code. As shown in [6], deficiencies resulting in deadlocks in the Linux and BSD
kernels make up a large amount of the overall number of errors found. In the
documentation explaining the API of the Linux kernel, quite strict rules about
the proper use of functions to lock various resources are stated. For example, in
[8, p. 121], one of the most basic rules is given as follows: "Neither semaphores
nor spinlocks allow a lock holder to acquire the lock a second time; should
you attempt to do so, things simply hang." The rational for this lies in the
functionality provided by spinlocks: a kernel thread holding a lock is spinning on

214 J.T. Mühlberg and G. Lüttgen

Table 1. Results of an empirical study of OS errors [6]

% of Bugs Rule checked
63.1% Bugs related to memory safety
38.1% Check potentially NULL pointers returned from routines.
9.9% Do not allocate large stack variables (> 1K) on the fixed-size

kernel stack.
6.7% Do not make inconsistent assumptions about whether a pointer is

NULL.
5.3% Always check bounds of array indices and loop bounds derived from

user data.
1.7% Do not use freed memory.
1.1% Do not leak memory by updating pointers with potentially NULL

realloc return values.
0.3% Allocate enough memory to hold the type for which you are allocating.

33.7% Bugs related to locking behaviour
28.6% To avoid deadlock, do not call blocking functions with interrupts

disabled or a spinlock held.
2.6% Restore disabled interrupts.
2.5% Release acquired locks; do not double-acquire locks.
3.1% Miscellaneous bugs
2.4% Do not use floating point in the kernel.
0.7% Do not de-reference user pointers.

one CPU and cannot be preempted until the lock is released. Another important
rule is that any code holding a spinlock cannot relinquish the processor for
anything except for serving interrupts; especially, the thread must never sleep
because the lock might never be released in this case [8, p. 118].

3 Checking Memory Safety

This section focuses on using Blast for checking usage rules related to mem-
ory safety, for which we have analysed several errors in different device drivers.
The examples studied by us include use-after-free errors in the kernel’s SCSI2
and InfiniBand3 subsystems. The former is the small computer system interface
standard for attaching peripheral devices to computers, while the latter is an
industry standard designed to connect processor nodes and I/O nodes to form
a system area network. In each of these examples, an invalid pointer that is not
NULL is de-referenced, which causes the system to behave in an undefined way.
This type of bug is not covered by the work on memory safety of Beyer et al. in
[3] and cannot easily be detected by runtime checks.

The example we will study here in detail is a use-after-free error spotted by
the Coverity source code analyser (www.coverity.com) in the I2O subsystem
2 Commit 2d6eac6c4fdaa69656d66c80754d267be233cc3f.
3 Commit d0743a5b7b837334cb414b773529d51de3de0471.

www.coverity.com

Blasting Linux Code 215

of the Linux kernel (cf. Sec. 3.1). To check for this bug in Blast we first spec-
ify a temporal safety specification in the Blast specification language. Taking
this specification, Blast is supposed to automatically generate an instrumented
version of the C source code for analysis (cf. Sec. 3.2). However, due to an appar-
ent bug in Blast, this step fails for our example, and we are therefore forced to
manually instrument our code by inserting ERROR labels at appropriate positions
(cf. Sec. 3.3). However, it will turn out that Blast does not track important
operations on pointers, which is not mentioned in Blast’s user manual and
without which our example cannot be checked (cf. Sec. 3.4).

3.1 The I2O Use-After-Free Error

The I2O subsystem bug of interest to us resided in lines 423–425 of the source
code file drivers/message/i2o/pci.c. The listing in Fig. 1 is an abbreviated
version of the file pci.c before the bug was fixed. One can see that function
i2o_iop_alloc() is called at line 330 of the code extract. This function is
defined in drivers/message/i2o/iop.c and basically allocates memory for an
i2o_controller structure using kmalloc(). At the end of the listing, this mem-
ory is freed by i2o_iop_free(c). The bug in this piece of code arises from the
call of put_device() in line 425, since its parameter c->device.parent causes
an already freed pointer to be de-referenced. The bug has been fixed in commit
d2b0e84d195a341c1cc5b45ec2098ee23bc1fe9d, by simply swapping lines 424
and 425 in the source file.

drivers/message/i2o/pci.c:
300 static int __devinit

i2o_pci_probe(
struct pci_dev *pdev,

301 const struct pci_device_id
*id)

302 {
303 struct i2o_controller *c;

330 c = i2o_iop_alloc();

423 free_controller:
424 i2o_iop_free(c);
425 put_device(

c->device.parent);

432 }

Fig. 1. Extract of drivers/message/i2o/pci.c

This bug offers various different ways to utilise Blast. A generic temporal
safety property for identifying bugs like this would state that any pointer that
has been an argument to kfree() is never used again unless it has been re-
allocated. A probably easier way would be to check whether the pointer c in
i2o_pci_probe() is never used again after i2o_iop_free() has been called
with c as its argument. Checking the first, more generic property would require
us to put function definitions from other source files into pci.c, since Blast
considers only functions that are available in its input file. Therefore, we focus
on verifying the latter property.

216 J.T. Mühlberg and G. Lüttgen

Checking for violations even of the latter, more restricted property will lead to
a serious problem. A close look at the struct i2o_controller and its initialisa-
tion in the function i2o_iop_alloc() reveals that i2o_controller contains a
function pointer which can be used as a "destructor". As is explained in Blast’s
user manual, the "current release does not support function pointers"; they are
ignored completely. Further, the manual states that "correctness of the analy-
sis is then modulo the assumption that function pointer calls are irrelevant to
the property being checked." This assumption is however not always satisfied in
practise, as we will see later in our example.

3.2 Verification with a Temporal Safety Specification

Ignoring the function pointer limitation, we developed the temporal safety spec-
ification presented in Fig. 2. The specification language used by Blast is easy
to understand and allows the assignment of status variables and events. In our
specification we use a global status variable allocstatus_c to cover the possible
states of the struct c of our example, which can be set to 0 meaning "not allo-
cated" and 1 meaning "allocated". Furthermore, we define three events, one for
each of the functions i2o_iop_alloc(), i2o_iop_free() and put_device().
All functions have special preconditions and calling them may modify the status
of c. The special token $? matches anything. Intuitively, the specification given
in Fig. 2 states that i2o_iop_alloc() and i2o_iop_free() must be called
alternately, and put_device() must only be called when c has not yet been
freed. Note that this temporal safety specification does not cover the usage rule
for i2o_iop_free() and put_device() in general. We are using one status
variable to guard calls of i2o_iop_free() and put_device() regardless of its
arguments. Hence, the specification will work only as long as there is only one
pointer to an i2o_controller structure involved.

Using the specification of Fig. 2, Blast should instrument a given C input
file by adding a global status variable and error labels for all violations of the

global int allocstatus_c = 0;

event
{
pattern { $? = i2o_iop_alloc(); }
guard { allocstatus_c == 0 }
action { allocstatus_c = 1; }
}

event
{
pattern { i2o_iop_free($?); }
guard { allocstatus_c == 1 }
action { allocstatus_c = 0; }
}

event
{
pattern { put_device($?); }
guard { allocstatus_c == 1 }
}

Fig. 2. A temporal safety specification for pci.c

Blasting Linux Code 217

preconditions. The instrumentation is done by the program spec.opt which is
part of the Blast distribution. For our example taken from the Linux kernel,
we first obtained the command used by the kernel’s build system to compile
pci.c with gcc. We appended the option -E to force the compilation to stop
after preprocessing, resulting in a C source file containing all required parts of
the kernel headers. This step is necessary since Blast cannot know of all the
additional definitions and include paths used to compile the file. Unfortunately,
it expands pci.c from 484 lines of code to approximately 16k lines, making it
difficult to find syntactical problems which Blast cannot deal with. Despite
spending a lot of effort in trying to use spec.opt, we never managed to get this
work. The program mostly failed with unspecific errors such as Fatal error:
exception Failure("Function declaration not found"). Finding such an
error in a huge source without having a line number or other hint is almost
impossible, especially since gcc compiles the file without any warning. We con-
structed several simplifications of the preprocessed file in order to trace the
limitations of spec.opt, but did not get a clear indication of what the source
is. We suspect it might be a problem with parsing complex data structures and
inline assembly imported from the Linux headers.

Given the bug in Blast and in order to demonstrate that our specification
indeed covers the programming error in pci.c, we developed a rather abstract
version of pci.c which is shown in Fig. 3. Using this version and the specification
of Fig. 2, we were able to obtain an instrumented version of our source code
without encountering the bug in spec.opt. Running Blast on the instrumented
version then produced the following output:

$ spec.opt test2.spc test2.c
[...]
$ pblast.opt instrumented.c
[...]
Error found! The system is unsafe :-(

In summary, the example studied here shows that the specification used in this
section is sufficient to find the bug. However, the approach required by Blast
has several disadvantages. Firstly, it is not automatic at all. Although we ended
up with only a few lines of code, it took quite a lot of time to produce this
code by hand and to figure out what parts of the original pci.c are accepted
by Blast. Secondly, the methodology only works if the bug is known before-
hand, hence we did not learn anything new about unwanted behaviour of this
driver’s code. We needed to simplify the code to an extent where the relation to
the original source code may be considered as questionable. The third problem
lies in the specification used. Since it treats the allocation and de-allocation as
something similar to a locking problem, we would not be able to use it in a
piece of code that refers to more than one dynamically allocated object. A more
generic specification must be able to deal with multiple pointers. According to
[2], such a generic specification should be possible to write by applying a few
minor modifications such as defining a "shadow" control state and replacing $?

218 J.T. Mühlberg and G. Lüttgen

test2.h:
#include <stdio.h>
#include <stdlib.h>

typedef struct device
{
int parent;
} device;

typedef struct i2o_controller
{
struct device device;
} i2o_controller;

i2o_controller *i2o_iop_alloc
(void);
void i2o_iop_free
(i2o_controller *c);
void put_device (int i);

test2.c:
#include "test2.h"

i2o_controller *i2o_iop_alloc
(void)

{ i2o_controller *c;
c = malloc(
sizeof(struct i2o_controller));
return (c); }

void i2o_iop_free
(i2o_controller *c)

{ free (c); }

void put_device (int i) { }

int main (void)
{ i2o_controller *c;

c = i2o_iop_alloc ();
i2o_iop_free (c);
put_device (c->device.parent);
return (0); }

Fig. 3. Manual simplification of pci.c

with $1. However, in practise the program generating the instrumented C source
file failed with obscure error messages.

3.3 Verification Without a Temporal Safety Specification

Since Blast could not deal with verifying the original pci.c using an explicit
specification of the use-after-free property, we will now try and manually instru-
ment the source file so that our bug can be detected whenever an ERROR label is
reachable.

When conducting our instrumentation, the following modifications were ap-
plied by hand to pci.c and related files:

1. A variable unsigned int alloc_status was added to the definition of
struct i2o_controller in include/linux/i2o.h.

2. The prototypes of i2o_iop_alloc() and i2o_iop_free() were removed
from drivers/message/i2o/core.h.

3. The prototype of put_device()was deleted frominclude/linux/device.h.
4. C source code for the functions put_device(), i2o_iop_free(), i2o_iop_

release() and i2o_iop_alloc()was copied from iop.c and drivers/base
/core.c into pci.c. The functions were modified such that the new field
alloc_status of a freshly allocated struct i2o_controller is set to 1 by

Blasting Linux Code 219

i2o_iop_alloc(). i2o_iop_free() no longer de-allocates the structure but
checks whether alloc_status equals 1 and sets it to 0; otherwise, it jumps
to the ERROR label. put_device() was modified to operate on the whole
struct i2o_controller and jumps to ERROR if alloc_status equals 0.

By feeding these changes into the model checker it is possible to detect duplicate
calls of i2o_iop_free() on a pointer to a struct i2o_controller, as well as
calls of put_device() on a pointer that has already been freed. Even calls of
i2o_iop_free() and put_device() on a pointer that has not been allocated
with i2o_iop_alloc(), should result in an error report since nothing can be
said about the status of alloc_status in such a case.

After preprocessing the modified source files and running Blast, we get the
output "Error found! The system is unsafe :-(". Even after we reduced
the content of i2o_pci_probe() to something quite similar to the main() func-
tion shown in Fig. 3 and after putting the erroneous calls of put_device() and
i2o_iop_free() in the right order, the system was still unsafe from Blast’s
point of view. It took us some time to figure out that Blast does not appear to
consider the content of pointers at all.

3.4 The Problem with Blast and Pointers

We demonstrate this apparent shortcoming of Blast regarding handling point-
ers by means of another simple example, for which Blast fails in tracing values
behind pointers over function calls.

test5.c:
1 #include <stdlib.h>
2
3 typedef struct example_struct
4 {
5 void *data;
6 size_t size;
7 } example_struct;
8
9
10 void init (example_struct *p)
11 {
12 p->data = NULL;
13 p->size = 0;
14
15 return;
16 }

17
18 int main (void)
19 {
20 example_struct p1;
21
22 init (&p1);
23 if (p1.data != NULL ||

p1.size != 0)
24 { goto ERROR; }
25 else
26 { goto END; };
27
28 ERROR:
29 return (1);
30
31 END:
32 return (0);
33 }

Fig. 4. An example for pointer passing

220 J.T. Mühlberg and G. Lüttgen

As can be seen in the code listing of Fig 4, label ERROR can never be reached
in this program since the values of the components of our struct are explicitly
set by function init(). However, Blast produces the following output:

$ gcc -E -o test5.i test5.c
$ pblast.opt test5.i
[...]
Error found! The system is unsafe :-(
Error trace:
23 :: 23: Pred((p1@main).data!=0) :: 29
-1 :: -1: Skip :: 23
10 :: 10: Block(Return(0);) :: -1
12 :: 12: Block(* (p@init).data = 0;* (p@init).size = 0;) :: 10
22 :: 22: FunctionCall(init(&(p1@main))) :: -1
-1 :: -1: Skip :: 22
0 :: 0: Block(Return(0);) :: -1
0 :: 0: FunctionCall (__BLAST_initialize_test5.i()) :: -1

This counterexample shows that Blast does not correlate the pointer p used in
init() and the struct p1 used in main(), and assumes that the if statement
in line 23 evaluates to true. After adding a line "p1.data = NULL; p1.size =
0;" before the call of init(), Blast claims the system to be safe, even if we
modify init() to reset the values so that they differ from NULL (and 0).

We were able to reproduce this behaviour in similar examples with pointers
to integer values and arrays. Switching on the BDD-based alias analysis im-
plemented in Blast also did not solve the problem. The example shows that
Blast does not only ignore function pointer calls as stated in its user manual,
but appears to assume that all pointer operations have no effect. This limitation
is not documented in the Blast manual and renders Blast almost unusable
for the verification of properties related to our understanding of memory safety.

3.5 Results

Our experiments on memory safety show that Blast is able to find the pro-
gramming error discovered by the Coverity checker. Out of eight examples, we
were able to detect two problems after minor modifications to the source code,
and three after applying manual abstraction. Three further programming errors
could not be traced by using Blast. Indeed, Blast has some major restrictions.
The main problem is that Blast ignores variables addressed by a pointer. As
stated in its user manual, Blast assumes that only variables of the same type
are aliased. Since this is the case in our examples, we initially assumed that our
examples could be verified with Blast, which is not the case. Moreover, we en-
countered bugs and deficiencies in spec.opt which forced us to apply substantial
and time consuming modifications to source code. Most of these modifications
and simplifications would require a developer to know about the error in ad-
vance. Thus, from a practitioner’s point of view, Blast is not of much help in
finding unknown errors related to memory safety. However, it needs to be men-
tioned that Blast was designed for verifying API usage rules of a different type

Blasting Linux Code 221

than those required for memory safety. More precisely, Blast is intended for
proving the adherence of pre- and post-conditions denoted by integer values and
for ensuring API usage rules concerning the order in which certain functions are
called, regardless of pointer arguments, return values and the effects of aliasing.

4 Checking Locking Properties

Verifying correct locking behaviour is something used in almost all examples
provided by the developers of Blast [2,16]. In [16], the authors checked parts
of the Linux kernel for correct locking behaviour while using the spinlock API
and stated that Blast showed a decent level of performance during these tests.
Spinlocks provide a very simple but quite efficient locking mechanism to ensure,
e.g., that a kernel thread may not be preempted while serving interrupts. The
kernel thread acquires a certain lock by calling spin_lock(l), where l is a
previously initialised pointer to a struct spinlock_t identifying the lock. A
lock is released by calling spin_unlock() with the same parameter. The kernel
provides a few additional functions that control the interrupt behaviour while the
lock is held. By their nature, spinlocks are intended for use on multiprocessor
systems where each resource may be associated with a special spinlock, and
where several kernel threads need to operate independently on these resources.
However, as far as concurrency is concerned, uniprocessor systems running a
preemptive kernel behave like multiprocessor systems.

global int lockstatus = 2;

event
{
pattern { spin_lock_init($?); }
guard { lockstatus == 2 }
action { lockstatus = 0; }
}

event
{
pattern { spin_lock($?); }
guard { lockstatus == 0 }
action { lockstatus = 1; }
}

event
{
pattern { spin_unlock($?); }
guard { lockstatus == 1 }
action { lockstatus = 0; }
}

event
{
pattern { $? = sleep($?); }
guard { lockstatus == 0 }
}

Fig. 5. A temporal safety specification for spinlocks

Finding examples for the use of spinlocks is not difficult since they are widely
deployed. While experimenting with Blast and the spinlock functions on sev-
eral small components of the Linux kernel we experienced that it performs well
with functions using only one lock. We focused on functions taken from the USB

222 J.T. Mühlberg and G. Lüttgen

subsystem in drivers/usb/core. Due to further unspecific parse errors with the
program spec.opt we could not use a temporal safety specification directly on
the kernel source. However, in this case we were able to generate the instrumented
source file and to verify properties by separating the functions under considera-
tion from the remaining driver source and by providing simplified header files.

In Fig. 5 we provide our basic temporal safety specification for verifying lock-
ing behaviour. Variable lockstatus encodes the possible states of a spinlock;
the initial value 2 represents the state in which the lock has not been initialised,
while 1 and 0 denote that the lock is held or has been released, respectively. The
pattern within the specification varies for the different spinlock functions used
within the driver source under consideration, and the specification can easily be
extended to cover forbidden functions that may sleep. An example for a function
sleep() is provided in the specification of Fig. 5.

Difficulties arise with functions that acquire more than one lock. Since all
spinlock functions use a pointer to a struct spinlock_t in order to identify a
certain lock, and since the values behind pointers are not sufficiently tracked
in Blast, we were forced to rewrite parts of the driver’s source and the ker-
nel’s spinlock interface. Instead of the pointers to spinlock_t structs we utilise
global integer variables representing the state of a certain lock. We have used
this methodology to verify an example of a recently fixed deadlock4 in the Linux
kernel’s SCSI subsystem. In Fig. 6 we provide an extract of one of the functions
modified in the fix. We see that the spinlocks in this example are integrated in
more complex data structures referenced via pointers. Even worse, this function
calls a function pointer passed in the argument done in line 1581, which was
the source of the deadlock before the bug was fixed. To verify this special case,
removing the function pointer and providing a dummy function done() with a
precondition assuring that the lock on shost->host_lock is not held is needed.
However, we were able to verify both the deadlock condition before the fix had
been applied, as well as deadlock freedom for the fixed version of the source.

During our experiments we analysed several other examples of deadlock condi-
tions. The more interesting examples are the spinlock problem explained above,

1564 int ata_scsi_queuecmd(struct
scsi_cmnd *cmd, void
(*done)(struct scsi_cmnd *))

1565 {
1566 struct ata_port *ap;
1567 struct ata_device *dev;
1568 struct scsi_device

*scsidev = cmd->device;
1569 struct Scsi_Host

*shost = scsidev->host;

1571 ap = (struct ata_port *)
&shost->hostdata[0];

1573 spin_unlock(shost->host_lock);
1574 spin_lock(&ap->host_set->lock);

1581 done(cmd);

1597 spin_unlock(&ap->host_set->lock);
1598 spin_lock(shost->host_lock);
1600 }

Fig. 6. Extract of drivers/scsi/libata-scsi.c

4 Commit d7283d61302798c0c57118e53d7732bec94f8d42.

Blasting Linux Code 223

and another one in the SCSI subsystem,5 as well as a bug in a IEEE1394 driver6.
We were able to detect the locking problems in all of these examples and proved
the fixed source files to be free of these bugs.

Results. Out of eight examples for locking problems we were able to detect
only five. However, when comparing our results with the conclusions of the pre-
vious section, Blast worked much better for the locking properties because it
required fewer modifications to the source code. From a practitioner’s point of
view, Blast performed acceptable as long as only one lock was involved. After
considerable efforts in simplifying the spinlock API — mainly removing the use
of pointers and manually adding error labels to the spinlock functions — we
also managed to deal with multiple locks. However, we consider it as fairly dif-
ficult to preserve the behaviour of functions that may sleep and therefore must
not be called under a spinlock. Even for large portions of source code, Blast
returned its results within a few seconds or minutes, on a PC equipped with
an AMD Athlon 64 processor running at 2200 MHz and 1 GB of RAM. Hence,
Blast’s internal slicing and abstraction techniques work very well.

We have to point out that the code listing in Fig. 6 represents one of the easily
understandable programming errors. Many problems in kernel source code are
more subtle. For example, calling functions that may sleep is something that
needs to be avoided. However, if a driver calls a function not available in source
code in the same file as the driver under consideration, Blast will only be able
to detect the problem if there is an event explicitly defined for this function.

5 Issues with Blast

This section highlights various shortcomings of the Blast toolkit which we
experienced during our studies. We also present ideas on how Blast could be
improved in order to be more useful for OS software verification.

Lack of Documentation. Many problems while experimenting with Blast
were caused by the lack of consistent documentation. For example, a significant
amount of time could have been saved in our experiments with memory safety,
if the Blast manual would state that almost all pointer operations are ignored.
An in-depth discussion of the features and limitations of the alias analysis im-
plemented in Blast would also be very helpful to have.

Non-support of Pointers. The fact that Blast does not properly support the
use of pointers, in the sense of Sec. 3.4, must be considered as a major restric-
tion, and made our experiments with the spinlock API rather difficult. The re-
striction forces one to carry out substantial and time consuming modifications to
source code. Furthermore, it raises the question whether all important predicates
of a given program can be preserved in a manual step of simplification. In some
of our experiments we simply replaced the pointers used by the spinlock functions
5 Commit fe2e17a405a58ec8a7138fee4ebe101858b636e0.
6 Commit 910573c7c4aced8fd5f45c334cc67862e3424d92.

224 J.T. Mühlberg and G. Lüttgen

with integers representing the state of the lock. This is obviously a pragmatic ap-
proach which does not reflect all possible behaviour of pointer programs. However,
it turned out that it is expressive enough to cover the usage rules of the spinlock
API. As such modifications could be introduced into the source code automati-
cally, we consider them as an interesting extension for Blast.

The missing support of function pointers has already been mentioned in Sec. 3.
It is true that function pointers are often used in both application space and OS
development. In most cases their effect on the program execution can only be
determined at run-time, not statically at compile-time. Therefore, we assume
that simply skipping all calls of function pointers is acceptable for now.

Usability. There are several issues regarding Blast’s usability which are prob-
ably easy to fix, but right now they complicate the work with this tool. Basically,
if a piece of C source is accepted by an ANSI C compiler, it should be accepted
by Blast rather than raising uninformative error messages.

A nice improvement would be to provide wrapper scripts that automate pre-
processing and verification in a way that Blast can be used with the same
arguments as the compiler. It could be even more useful if functions that are
of interest but from other parts of a given source tree, would be copied in au-
tomatically. Since we obviously do not want to analyse the whole kernel source
in a single file, this should be integrated into Blast’s abstraction/model check-
ing/refinement loop.

6 Related Work

Much work on techniques and tools for automatically finding bugs in software
systems has been published in recent years.
Runtime Analysis. A popular runtime analysis tool which targets memory
safety problems is Purify (www-306.ibm.com/software/awdtools/purify/).
It mainly focuses on detecting and preventing memory corruption and mem-
ory leakage. However, Purify and other such tools, including Electric Fence
(perens.com/FreeSoftware/ElectricFence/) and Valgrind (valgrind.org),
are meant for testing purposes and thereby only cover the set of program runs
specified by the underlying test cases. An exhaustive search of a programs state
space, as is done in model checking, is out of the scope of these tools.
Static Analysis and Abstract Interpretation. Static analysis is another
powerful technique for inspecting source code for bugs. Indeed, most of the
memory safety problems within the examples of this paper had been detected
earlier via an approach based on system-specific compiler extensions, known as
meta-level compilation [11]. This approach is implemented in the tool Coverity
(www.coverity.com) and was used in [6]. A further recent attempt to find bugs
in OS code is based on abstract interpretation [10] and presented in [4]. The au-
thors checked about 700k lines of code taken from recent versions of the Linux
kernel for correct locking behaviour. The paper focuses on the kernel’s spinlock
interface and problems related to sleep under a spinlock. Several new bugs in the
Linux kernel were found during the experiments. However, the authors suggest

www-306.ibm.com/software/awdtools/purify/
perens.com/FreeSoftware/ElectricFence/
valgrind.org
www.coverity.com

Blasting Linux Code 225

that their approach could be improved by adopting model checking techniques.
An overview of the advantages and disadvantages of static analysis versus model
checking can be found in [12].

Case Studies with Blast. We have already referred to some such case studies
in the introduction. Two project reports of graduate students give further de-
tails on Blast’s practical use. In [20], Mong applies Blast to a doubly linked
list implementation with dynamic allocation of its elements and verifies correct
allocation and de-allocation. The paper explains that Blast was not powerful
enough to keep track of the state of the list, i.e., the number of its elements.
Jie and Shivkumar report in [18] on their experience in applying Blast to a
user level implementation of a virtual file system. They focus on verifying cor-
rect locking behaviour for data structures of the implementation and were able
to successfully verify several test cases and to find one new error. However, in
the majority of test cases Blast failed due to documented limitations, e.g., by
not being able to deal with function pointers, or terminated with obscure error
messages. Both studies were conducted in 2004 and thus based on version 1.0 of
Blast. As shown in this paper, Blast’s current version has similar limitations.

7 Conclusions and Future Work

We exposed Blast to analysing 16 different OS code examples of program-
ming errors related to memory safety and locking behaviour. Details of the ex-
amples which we could not show here due to a lack of space, can be found
at www.cs.york.ac.uk/~muehlber/blast/. In our experience, Blast is rather
difficult to apply by a practitioner during OS software development. This is be-
cause of (i) its limitations with respect to reasoning about pointers, (ii) several
issues regarding usability, including bugs in spec.opt, and (iii) a lack of consis-
tent documentation. Especially in the case of memory safety properties, massive
changes to the source code were necessary which essentially requires one to know
about a bug beforehand. However, it must be mentioned that Blast was not
designed as a memory debugger. Indeed, Blast performed considerably better
during our tests with locking properties; however, modifications on the source
code were still necessary in most cases.

Blast performed nicely on the modified source code in our examples for
locking properties. Even large portions of C code — up to 10k lines with several
locks, status variables and a relatively complex program structure — were parsed
and model checked within a few minutes on a modern PC. Hence, the techniques
for abstraction and refinement as implemented in Blast are quite able to deal
with most of the problems analysed in this paper. If its limitations are ironed
out, Blast is likely to become a very usable and popular tool with OS software
developers in the future.

Regarding future work we propose that our case study is repeated once the
most problematic errors and restrictions in Blast are fixed. An analysis allow-
ing one to draw quantitative conclusions concerning Blast’s ability of finding

www.cs.york.ac.uk/~muehlber/blast/

226 J.T. Mühlberg and G. Lüttgen

certain programming problems could then give results that are more interest-
ing to kernel developers. To this end, metrics for the evaluation of Blast are
required, as is a more precise classification of the chosen examples.

Acknowledgements. We thank Radu Siminiceanu for his constructive comments
and suggestions on a draft of this paper.

References

1. Ball, T. and Rajamani, S. K. Automatically validating temporal safety properties
of interfaces. In SPIN 2001, vol. 2057 of LNCS, pp. 103–122.

2. Beyer,D.,Chlipala,A. J.,Henzinger,T.A., Jhala,R., andMajumdar,R. TheBLAST
query language for software verification. In PEPM 2004, pp. 201–202. ACM Press.

3. Beyer, D., Henzinger, T. A., Jhala, R., and Majumdar, R. Checking memory safety
with BLAST. In FASE 2005, vol. 3442 of LNCS, pp. 2–18.

4. Breuer, P. T. and Pickin, S. Abstract interpretation meets model checking near
the 106 LOC mark. In AVIS 2006. To appear in ENTCS.

5. Chaki, S., Clarke, E., Groce, A., Ouaknine, J., Strichman, O., and Yorav, K. Ef-
ficient verification of sequential and concurrent C programs. FMSD, 25(2–3):129–
166, 2004.

6. Chou, A., Yang, J., Chelf, B., Hallem, S., and Engler, D. R. An empirical study
of operating system errors. In SOSP 2001, pp. 73–88. ACM Press.

7. Clarke, E. M., Grumberg, O., and Peled, D. A. Model checking. MIT Press, 2000.
8. Corbet, J., Rubini, A., and Kroah-Hartmann, G. Linux Device Drivers. O’Reilly,

3rd edition, 2005.
9. Corbett et al, J. C. Bandera: Extracting finite-state models from Java source code.

In ICST 2000, pp. 439–448. SQS Publishing.
10. Cousot, P. and Cousot, R. On abstraction in software verification. In CAV 2002,

vol. 2404 of LNCS, pp. 37–56.
11. Engler, D. R., Chelf, B., Chou, A., and Hallem, S. Checking system rules using

system-specific, programmer-written compiler extensions. In OSDI 2000. USENIX.
12. Engler, D. R. and Musuvathi, M. Static analysis versus software model checking

for bug finding. In VMCAI 2004, vol. 2937 of LNCS, pp. 191–210.
13. Henzinger, T. A., Jhala, R., and Majumdar, R. Race checking by context inference.

In PLDI 2004, pp. 1–13. ACM Press.
14. Henzinger, T. A., Jhala, R., Majumdar, R., and Sanvido, M. A. A. Extreme model

cecking. In Verification: Theory & practice, vol. 2772 of LNCS, pp. 232–358, 2003.
15. Henzinger, T. A., Jhala, R., Majumdar, R., and Sutre, G. Lazy abstraction. In

POPL 2002, pp. 58–70. ACM Press.
16. Henzinger et al, T. A. Temporal-safety proofs for systems code. In CAV 2002, vol.

2404 of LNCS, pp. 526–538.
17. Holzmann, G. J. The SPIN model checker. Addison-Wesley, 2003.
18. Jie, H. and Shivaji, S. Temporal safety verification of AVFS using BLAST. Project

report, Univ. California at Santa Cruz, 2004.
19. Microsoft Corporation. Static driver verifier: Finding bugs in device drivers at

compile-time. www.microsoft.com/whdc/devtools/tools/SDV.mspx.
20. Mong, W. S. Lazy abstraction on software model checking. Project report, Toronto

Univ., Canada., 2004.
21. Necula, G. C., McPeaki, S., and Weimer, W. CCured: Type-safe retrofitting of

legacy code. In POPL 2002, pp. 128–139. ACM Press.

www.microsoft.com/whdc/devtools/tools/SDV.mspx

A Finite State Modeling of AFDX Frame Management
Using Spin

Indranil Saha and Suman Roy

Honeywell Technology Solutions Lab Pvt. Ltd.
151/1, Doraisanipalya, Bannerghatta Road,

Bangalore 560 076, India
{indranil.saha, suman.roy}@honeywell.com

Abstract. Data exchange with strong data transmission time guarantees is nec-
essary in the internal communication of an aircraft. The Avionics Full Duplex
Switched Ethernet (AFDX) has been developed for this purpose. Its design is
based on the principle of a switched network with physically redundant links to
support availability. It should also be tolerant to transmission and link failures in
the network. Recent research on an industrial case study by Anand et. al. reveals
that AFDX frame management design is vulnerable to faults such as network
errors, network babbling etc. Their proposed modifications, though are able to
solve these problems, degrades the performance of network in terms of delay at
receiving end and delay before the receiving end-system gets reset. They also
do not present any performance analysis. We propose new solutions to alleviate
these problems in AFDX frame management design, formally model it in Spin
incorporating our proposed solution, thus also showing a finite state modeling of
the above is possible. We also verify some of its relevant properties and carry out
a performance analysis of the same.

Keywords: Industrial case study, ARINC, AFDX frame management design, fi-
nite state modeling, verification, LTL, fault tolerance, Spin model checker.

1 Introduction

As the complexity of avionics systems has grown for both flight-critical items and pas-
senger entertainment, so has the need for increased bandwidth of on-board data buses.
The desire for rapid deployment with minimal development and implementation costs,
such as wiring, has driven the industry to explore existing off-the-shelf technologies.
Both Boeing and Airbus have explored commercial Ethernet technology to build a next-
generation avionics data bus. This research has resulted in the development of Avionics
Full-Duplex Switched Ethernet (AFDX) [4], based upon IEEE 803.2 Ethernet tech-
nology [13], but adding specific functionality to provide a deterministic network with
guaranteed service. The Avionics Full Duplex Switched Ethernet (AFDX) is a special
application of a network compliant with ARINC 664. Although 802.3 Ethernet offers
high speed and low cost due to widespread commercial usage, it does not offer the ro-
bustness required for an avionics system. The primary drawback of IEEE 802.3 is the
lack of guaranteed bandwidth and Quality of Service (QoS). The AFDX attempts to
solve these issues with key enhancements to provide deterministic timing and reliable

L. Brim et al. (Eds.): FMICS and PDMC 2006, LNCS 4346, pp. 227–243, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

228 I. Saha and S. Roy

delivery of messages. Deterministic timing is achieved through communication over
virtual links (VL) that have a bounded bandwidth and frame delivery interval. Commu-
nication over redundant channels is used to achieve reliable delivery of the messages. A
frame management mechanism is responsible for checking integrity of message frames
and managing the redundancy before delivering the messages to the application. There-
fore, the frame management forms an important component of the AFDX design and
has to be guaranteed against design flaws: this highlights its importance as an industrial
case study.

Recently Anand et.al. [1] have developed a formal model of the AFDX frame man-
agement to ascertain the reliability properties of the design. To capture the temporal
semantics, they have modeled the system as a network of timed automata [2] and use
UPPAAL [7] to model-check for the desired properties expressed in CTL. Their analy-
sis detects that the design of the AFDX frame management is vulnerable to faults such
as network errors, network babbling etc which led to unwarranted resets and dropped
frames if they arrived out-of-order. To fully utilize the redundancy in messages and use
this redundancy to detect faults, they propose including a priority queue at the receiving
end which helps detect network babble on a channel, and deliver frames in sequence to
the application even if they arrive out-of-order. To reduce the probability of erroneous
resets, they suggest communicating redundant copies of the reset message. But their so-
lution suffer from two major limitations: it increases delay at the receiving end-system
to deliver frames to the upper level of protocol stack, and it also increases delay before
the receiving end system reset.

We address these issues, and provide new solutions to alleviate these problems. We
propose two modifications towards that by providing a signature for each data frame
and a variable to keep track of the sequence number of the last frame delivered to
the upper level of the protocol stack. The receiver can authenticate each message it
receives by using its signature which provides a protection against the network bab-
ble. The Redundancy Checking is efficiently performed using the variable “psn” and a
queue which holds the frames coming to the receiver out of order. Incorporating these
modifications we model AFDX frame management design in PROMELA language. We
specify the desired properties in LTL, and model-check those properties by using Spin
model checker [12]. We also present a performance analysis of our model which was
not present in an earlier work [1].

The remainder of this paper is organized as follows: In Section 2, we briefly describe
AFDX frame management design, describe the modifications proposed by Anand et.
al. [1], and the drawback of their proposed modification. In this section, we also intro-
duce our modification over original AFDX design, and explains how these modifications
help to alleviate the drawbacks that arise in [1]. We briefly discuss on discrete time ex-
tension of Spin in Section 3. In Section 4 we describe our model, and in Section 5 we
present the verification results, and analyze them. Section 6 finally concludes the paper.

2 AFDX Frame Management

AFDX network consists of a number of End-Systems, the function of which is to pro-
vide services, which guarantee a secure and reliable data exchange to the partition soft-

A Finite State Modeling of AFDX Frame Management Using Spin 229

ware. The heart of an AFDX network is the virtual link (VL). Each VL builds a unidi-
rectional logic path from one source ES to one or more destination ESes. Each VL is
allocated dedicated bandwidth, the amount being defined by the system integrator. The
total bandwidth of all created VLs cannot exceed the maximum available bandwidth of
the network, and the bandwidth allocated to a given VL is reserved to that link. Funda-
mental to an AFDX network is guaranteed service: both the bandwidth and maximum
end-to-end latency of the link are guaranteed. However, there is no guarantee of packet
delivery. Transmission acknowledgements and retransmission requests must be handled
at the application level.

Reliable frame delivery in the AFDX design is ensured by utilizing redundant links.
This basic idea of network redundancy is shown in Figure 1. End-systems communicate
over multiple communication channels with the effect that communication is protected
against loss of one complete network. The redundancy scheme operates on a per link
basis in the following manner: A transmitting end-system prepares some data and passes
it to the communication protocol stack. Here, a sequence number is added to each frame
to enable the receive function to reconstruct a single ordered stream of frames without
duplication before delivery to the receiving partition. The sequence numbers are one
octet long with a range from 0 to 255 and are incremented on each successive frame.
After 255, the sequence number is wrapped around to 1. The sequence number 0 is
reserved for communicating reset. In the default mode, each frame is sent across both
of the channels and the redundancy is taken care at the receiving end-system.

Fig. 1. Network Redundancy Concept

Upon reception, an algorithm in the communications stack (below IP layer) uses a
“First Valid Wins” policy. This means that the first frame to be received from either net-
work channel with the next valid sequence number is accepted and passed up the stack
to the receiving partition. When the second frame is received with this sequence num-
ber, it is simply discarded. Figure 2 shows the redundancy management at the receiving
end-system. Redundancy Manager (RM) is placed after the Integrity Checker (IC). Un-
der fault-free network operation, the IC simply passes the frames that it has received
on to the RM, independently for each network. If there are faults (based on sequence
number), the IC has the task to eliminate invalid frames. For each network the IC tests
each frame for a sequence number in the interval: [PSN

⊕
1, PSN

⊕
2] where Pre-

vious Sequence Number (PSN) is the sequence number of the previous frame received
(but not necessarily forwarded) on this VL. The operator

⊕
takes the wrap-around of

sequence numbers into account. For example, if PSN = 254, then PSN
⊕

1 = 255 and
PSN

⊕
2 = 1.

The network channel is responsible for deliveringr frames from the transmitting end-
system to the receiving end-system. Different kinds of network faults may arise with

230 I. Saha and S. Roy

Fig. 2. Redundancy Management at the Receiving End-System

Fig. 3. AFDX Frame Format

their detrimental impact on the frame management. We consider two kinds of network
faults here:

1. Arbitrary drop of frame due to channel error: Due to some error in the channel
a frame may be arbitrarily dropped from the channel, which does not reach the
receiver.

2. Network Babble: Arbitrary frame can be generated in the channel and delivered to
the receiver.

In practice, however, it is commonly assumed that the probability of error in consec-
utive frames is close to zero. Also, when a babbled frame is generated in the channel,
the probability that the next frame which reach the receiver is also a babbled frame is
insignificant. To model AFDX protocol, we have taken these assumptions into consid-
eration, as was done in the modeling of AFDX protocol by Anand et. al. [1].

The AFDX frame format is shown in Figure 3. The destination and source addresses
are contained in the Ethernet Header. The actual IP address information is contained
in the IP Structure block. The UDP structure identifies the appropriate application port.
The AFDX payload ranges from 17 to 1471 bytes. Payload sizes less than 17 bytes must
be padded to maintain a minimum length of 17 bytes. The one-byte sequence number
is used to maintain ordinal integrity within a given VL. The maximum frame size is set
for each VL and is represented by the parameter LMAX . The range of this parameter is
between 60 and 1514 bytes.

There are some temporal aspects of AFDX frame management system mentioned
below:

BAG. The data flow on the links is controlled by the transmitting end-systems accord-
ing to the Bandwidth Allocation Gap (BAG). The BAG values are the time slices

A Finite State Modeling of AFDX Frame Management Using Spin 231

allocated for an end-system to transmit data on a VL. This time is defined in mil-
liseconds and is typically some exponent of two.

Jitter. The ES may introduce jitter when transmitting frames for a given VL. This jitter
is defined as the interval beginning from the start of the BAG to the occurrence of
the first bit of the frame transmitted through the VL.

TDRF. Time Delay for Redundant Frame is defined as the maximum time difference
between the sending of the redundant copies of a frame on the two channels.

Resetdelay. This is the time that an endsystem spends as it is reset, and come to the
normal operational mode.

Latency. Latency is defined as the time for a frame that it spends in the channel. Max-
imum and minimum values of latency are denoted by Maximum Channel Latency
(Lmax) and Minimum Channel Latency (Lmin).

Skewmax. It is the maximum time difference between the reception of two redundant
frames by the receiver.

2.1 Modeling of AFDX Design in UPPAAL

In [1], Anand et. al. developed a formal model of the AFDX frame management to
ascertain the reliability properties of the design. They modeled the system as a network
of timed automata and used UPPAAL to model-check the desired properties expressed
in CTL. In their work, they haven’t considered the jitter time. Their analysis revealed
that the AFDX frame management is vulnerable to faults such as arbitrary dropping of
frames and network babble. They considered the following three reliability properties:

– A babbling frame is never accepted by the receiver.
– A receiving end-system reset implies a transmitting end-system reset.
– If a valid and non-redundant frame is delivered, then it is not discarded.

They considers two conditions under which they verifies the above three properties:

(a) Skewmax < (BAG − Lmax + Lmin):
Under this condition, the frames arrive in order, i.e., a redundant frame on the second
channel arrives the receiver before the successive frame on the first channel. When
model-checked by UPPAAL, the first two properties had been proved to be non-valid,
while the third one was valid.
(b) Skewmax > (BAG − Lmax + Lmin) :
The frames arrive out of order to the receiver, i.e., in this case it is possible that the
redundant frame on the second channel arrives the receiver after the successive frame
arrives on the first channel. When model-checked by UPPAAL, all the three properties
had been proved to be non-valid.

The counterexample that was generated for the first property is that if one of the net-
work babbles such that the babbling frame number is either PSN

⊕
1 or PSN

⊕
2,

then this is accepted and in this process, the legitimate frame from the other network
gets rejected even though it is delivered successfully. The counterexample for the sec-
ond property is that if a network babbles a reset frame (frame with sequence number 0),
then that results in the receiving end-system getting erroneously reset. For the third prop-
erty, counterexample shows that when the faster of the two networks delivers successive

232 I. Saha and S. Roy

invalid and valid frames before the slower network can deliver the first one, the receiv-
ing end-system accepts the second frame from the faster network and considers the first
frame (which is valid) on the slower network as invalid and discards it.

2.2 Modifications of AFDX Design Suggested

As a remedy of the above problems, the authors proposed two modifications in the
original AFDX protocol. The first modification is the introduction of an integrity check
with queuing module instead of the distinct IC and RM modules in the original design.
Under this modification, the first property and the third property becomes valid, offering
better data integrity and QoS. But the drawback of the modification is that it introduces
an additional delay of as high as (Lmax + BAG − Lmin), over the latency Skewmax
of the original AFDX design. The second modification has two aspects. It deals with
the second property which is not valid in case of original AFDX design due to network
babble. To achieve tolerance to one channel babble, one extra network channel can
be introduced, which adds a significant overhead. Otherwise instead of sending one
frame 0 through one channel, two reset messages are sent on both the channels. The
disadvantage here is that it increases the delay before the receiver gets reset.

2.3 Further Improvement of the Frame Management Design

To improve the AFDX frame management design, we propose two modifications on the
original AFDX design. The first two properties of AFDX deals with network babble.
By checking only the sequence number, it is not possible for the Integrity Checker to
decide whether a frame is legitimate frame or babbled frame. To provide the IC the way
to detect a babbled frame we propose to introduce a new field in the original AFDX
frame. This field is like a signature [15] of the frame sequence number. To generate the
signature, any hash function [15] can be used. At the receiving end, the receiver can
now perform a message authentication [14] like operation to verify whether the frame
is legitimate. This replaces the IC part of original AFDX design. Note that the signature
does not add much overhead to the message sent from the transmitting end as it only
increases the length of the AFDX frame by 1 byte.

The second modification is on Redundancy Manager. It maintains a variable psn
which denotes the sequence number of the last frame it has delivered to the upper level
of the protocol stack. Also it maintains a queue to store the frames which reach the RM
out of order. When the RM gets a legitimate frame from the IC of either channel, it
checks whether a frame with the same sequence number is already in the queue. If that
is the case, then the frame is delivered to the upper level of the protocol stack. If the
frame is not present in the queue, then it checks whether the sequence number of the
incoming frame is (psn

⊕
1). If it is so, then the RM accepts the frame and sends it im-

mediately to the upper level of the protocol stack. If the sequence number of the frame is
less than (psn

⊕
1), then the RM simply discards the frame, as the frame with the same

sequence number has been already accepted. If the sequence number of the incoming
frame is greater than (psn

⊕
1), the frame is enqueued. Whenever a frame is delivered

A Finite State Modeling of AFDX Frame Management Using Spin 233

to the upper level of the protocol stack, the psn value is changed to the sequence number
of that frame. Then the queue is examined to check whether it contains a frame with
sequence number (psn

⊕
1). If it is so, then the frame is delivered, and again the same

process is repeated.
In our design, as a signature is sent with every transmitted frame, a babbled frame can

not affect the performance of the network, whatever the sequence number of the babbled
frame may be. The IC never passes a babbled frame to the RM. As a result, a babbled
frame with sequence number 0 can not reset the receiver. So the first two properties of
AFDX design should be satisfied. Let us explain the case of the third property by an
example. We consider the Skewmax parameter to be arbitrarily large. Suppose, in the
first channel, Frame 1 (frame with sequence number 1) has been accepted by the IC,
and the RM delivers the frame to the upper level of the protocol stack. Frame 1 is also
received by the IC of channel 2 and discarded by the RM. Now frame 2 is dropped on
Channel 1. There may be two cases. Frame 2 may be dropped in the second channel
also. If that is the case, then Frame 3 on any channel, which comes first to the RM is
enqueued. Whenever Frame 3 Comes through the other channel, the frame is dequeued
and passed to the upper level of the protocol stack. If Frame 2 is not dropped on the
second channel, then whenever RM gets it, it delivers Frame 2 to the upper level and
also, it dequeues the successive frames from the queue, and delivers them. Note that
the number of the elements present in the queue depends on the parameter Skewmax. In
both the cases, delivery of a frame is not delayed more than Skewmax time unit, so the
frame delivery delay of the original AFDX protocol is maintained in our design. The
problem of erroneous reset of receiver is also removed without any overhead in terms
of number of channels and delay before the receiver resets.

3 Discrete Time in Promela and Spin

Spin is a tool for automatically model checking distributed systems [12]. Spin checks
properties of communication protocols, modeled in the Promela language, by exploring
their state space. Promela is a non-deterministic guarded-command language for mod-
eling systems of concurrent processes that can interact via shared variables and message
channels. Interaction via message channels can be either synchronous or asynchronous
with arbitrary buffer capacities, and arbitrary number of message parameters. Given a
concurrent system modeled by a Promela program, Spin can check for deadlock, dead
code, violations of user specified assertions, and temporal properties expressed by LTL
formulas. When a violation of a property is detected, Spin reports a scenario, i.e., a
sequence of transitions, violating this property.

The time ordering of actions in a Promela program is implicit and depends on the
(fixed) sequential composition of statements within each one of the component
processes, as well as on the (unspecified) interleaving of statements from different
processes. This time relation is only qualitative, meaning that we do not know the exact
time interval that will elapse between two events. This can be a hindrance when systems
are to be verified whose correct functioning depends on timing parameters. One faces
the same problem while trying to model AFDX in Promela, it requires the provision
of explicitly expressing time in Spin. There are few literatures on time extensions of

234 I. Saha and S. Roy

Spin [5,6,17]. We shall be considering the work of [5,6] as it will be sufficient for our
purpose. This extension allows one to quantify (discrete) time elapse between events,
by specifying the time slice in which they occur. This extension is fully compatible with
the partial order reduction algorithm. Although the real-time extension of Spin [17] is
more general that it can model Timed Automata with real-valued clocks, it is not com-
patible with the partial order reduction algorithm.

In the discrete time model, time is divided into slices of equal length indexed by
natural numbers. The actions are then framed into those slices, obtaining in that way
a measure for the elapsed time between events belonging to different slices. Within a
slice however, we only know the relative ordering between events, as in the time free
case. The elapsed time between events is measured in ticks of a global digital clock that
is increased by one with every such tick.

The basic idea behind simulation is to execute the system time slice by time slice.
Recalling that the execution of statements in Spin is asynchronous and interleaved, the
basic problem is how to avoid interleaving of actions belonging to different time slices.
The authors implement this synchronization scheme by extending Promela with a new
variable type timer corresponding to discrete time countdown timers, three new state-
ments set, expire and tick that operate on the new type, and a special timing
process Timers which is the demon process that uses ticks to decrease the timer
values. The implementation can be done entirely on user level, without any additional
changes in the Spin source code, for example, with the following Promela macro defin-
itions and timer process.

#define timer byte
#define set(tmr,val) (tmr=val)
#define expire(tmr) (tmr==0) /*timeout*/
#define tick(tmr) if :: tmr>0 -> tmr=tmr-1 :: else fi

proctype Timers()
do :: timeout -> atomic{ tick(tmr1); tick(tmr2) } od

Timers consists of an endless do iteration that realizes the passage of time. It runs
concurrently with the other processes of the system. The key idea of the concept is the
usage of timeout - a predefined Promela statement that becomes true when no other
statement within the system is executable. By guarding ticks with timeout, we ensure
that no process will proceed with an action from the next time slice until the other
processes have executed all actions from the current time slice.

Within a process, statements are divided into time slices by puttingset and expire
at the beginning and end, respectively, of each time slice. For instance, assuming that we
have declared timer tmr, and that A, B and C are nonblocking Promela statements, the
sequence,

set(tmr,1); A; B; expire(tmr); C

means that A and B will be executed in same time slice, while C belongs to the next
time slice. The expire statement is a synchronization point where the process waits
for tmr to become zero. This can be done only by Timers, i.e., only when all active

A Finite State Modeling of AFDX Frame Management Using Spin 235

timers are decreased. Thus, it is guaranteed that C will be executed in the next time
slice. In fact, set is only a labeling of the time slice (some sort of reading of the global
digital clock is assumed in this time model) and it can be permuted with the statements
from the time slice that it labels (in our case A and B).

It is often convenient to use derived macros for modeling various delays. For in-
stance, one tick delay and unbounded nondeterministic delay are implemented, by the
following macros

#define delay(tmr,x) set(tmr,x); expire(tmr)
#define udelay(tmr) do ::delay(tmr,1) ::break od

In the unbounded nondeterministic delay, at each iteration a nondeterministic choice
is made whether the loop will be broken and the process will proceed with the exe-
cution of a new statement, or the decision will be delayed for the next time slice. In
a similar way a nondeterministic bounded delay up to a certain number of ticks, or a
nondeterministic delay within lower and upper bounds can be modeled.

It is noteworthy that, because of the independence of the timing implementation
from the other parts of Spin’s source code, the expressivity of the timing framework is
in fact augmented with the introduction of new features on Spin, we shall address it as
DT-Spin.

4 Modeling Modified AFDX Frame Management Design in
Promela

We model the AFDX frame management system in Promela. This model captures the
temporal aspects of the frame management such as BAG, transmission delay of redun-
dant frame, transmitter jitter, transmitter reset delay and channel latency. In our model,
there are four components: the transmitting end system, two channels, and the receiving
end system. These four components are modeled as four active processes.

4.1 Transmitting End-System

The Bandwidth Allocation Gap (BAG) of the transmitter is modeled by a timer bag.
Once it expires, a new BAG starts immediately. At the beginning of a new BAG, the bag
timer is set to the BAG value 16, and a boolean variable rchk which denotes transmitter
reset is set to 0. Transmitter jitter is randomly set to any value between 1 to 3 time units.
The Transmitter has to wait for that much time to transmit the first of the two redundant
frames. It is randomly decided by the randomreset function whether the Transmitter
will be reset or it will continue sending frames, a boolean variable reset is used for
this purpose. If it is 0, then the Transmitter generates the hashed value messagedigest
through the Channel 1, the current transmitted frame being represented by the vari-
able tfr. A timer tdrf is set to the value TDRF which represents the maximum delay of
the Transmitter to send the redundant frame through Channel 2. The same frame with
the same messagedigest is sent through Channel 2 before the timer tdrf expires. When

236 I. Saha and S. Roy

the timer tdrf expires, tfr is updated to the sequence number of the next frame to be
transmitted. If the current transmitted frame is less than 255, then the tfr is updated to
tfr + 1, if the current transmitted frame is 255, then it is made 1. If the reset variable
is 1, the transmitter will be reset, the boolean variable rchk is set to 1. A frame with
sequence number 0 along with its corresponding messagedigest is sent in the same
way as any other frame described through Channel 1 and 2. There is delay of HRD
time units corresponding to the hardware reset at the Transmitter, which is modeled
by the timer resetdelay. Then the tfr is set to 1 to model the fact that after reset the
Transmitter again starts sending frames beginning with sequence number 1. At this
point Transmitter resets some flag variables, they will be discussed while describing the
models of the channels and Receiver processes. The Promela code of the Transmitter
process is described in the following Listing 1.

4.2 Network Channel

In our model, there are two processes Channel1 and Channel2 corresponding to the two
channels in the system. The design of these two channels are identical. We represent
the model of Channel 1 in Listing 2. Following [1] we consider two types of errors in
Channel 1.

1. Arbitrary drop of frame due to channel error: Due to some error in the channel a
frame may be arbitrarily dropped from the channel, and it does not reach the receiver.
To generate this error, we use an inline function randomerrorinchannel1. The boolean
variable error1 denotes the presence of error in Channel 1. If error1 is 0, then the
frame obtained from the transmitter is delivered successfully to the receiver. An array
of boolean variable ec1flag[255] is used to keep track of which frames are in error
during the transmission. The latency of the Channel 1 has been modeled by using inline
function randomlatencyinchannel1. This function randomly sets the latency for a frame
to be transmitted to an arbitrary value between MINLATENCY and MAXLATENCY,
which are two system parameters. The variable latency1 represents the latency of a
frame in Channel 1.
2. Network Babble: Due to network babble arbitrary frame can be generated in the
channel and can be delivered to the receiver. The function randombabbleinchannel1
randomly decides if a babbled frame has been generated in Channel 1. The variables
babble1 denotes the generation of a babbled frame in Channel 1. If babble1 is 1 then the
babbled frame is generated randomly with a sequence number between 0 to 255. Also,
the hashed value messagedigest for the babbled frame is generated randomly which also
takes value between 0 to 255.

4.3 Receiving End-System

When the Receiver gets a frame from Channel 1 or Channel 2, it first verifies the frame
to check whether it is babbled or not. This is performed by the verify function. By
this function the receiver, knowing the hash function, generates the signature for the
incoming frame, and checks if it matches with the messagedigest field of the incoming
frame. If they do not match then the receiver decides the received frame to be babbled,

A Finite State Modeling of AFDX Frame Management Using Spin 237

Listing 1. Model of the Transmitting End-System

proctype Transmitter() {
byte j;
do
:: expire(bag) ->

set(bag, BAG);
rchk = 0;
randomjitter();
delay(transmitterjitter, jitter);
randomreset();
if
:: reset == 0 ->

generatemessagedigest(tfr);
channelt1 ! tfr, messagedigest;
set(tdrf, TDRF);
channelt2 ! tfr, messagedigest;
do
:: expire(tdrf) ->

if
:: tfr < 255 -> tfr = tfr + 1;
:: else -> tfr =1;
fi;
break;

od;
:: reset == 1 ->

rchk =1;
tfr = 0;
generatemessagedigest(tfr);
channelt1 ! tfr, messagedigest;
set(tdrf, TDRF);
channelt2 ! tfr, messagedigest;
do
:: expire(tdrf) ->

delay(resetdelay, HRD);
tfr = 1; j = 0;
do
:: j < 256 ->

ec1flag[j] = 0;
ec2flag[j] = 0;
rfflag[j] = 0;
j++;

:: j == 256 -> break;
od;
break;

od;
fi;

od
}

238 I. Saha and S. Roy

Listing 2. Model of Channel 1
proctype Channel1() {

byte j;
byte cfr1, cmd1;
randombabbleinchannel1();
do
:: babble1 == 1 ->

generatebabbleframeforchannel1();
channelr1! babblefrm1,
randommsgedigest1;
babble1 = 0;

:: channelt1 ? cfr1, cmd1 ->
randomerrorinchannel1();
if
:: error1 == 0 ->

ec1flag[cfr1] = 1;
randomlatencyinchannel1();
delay(channeldelay1, latency1);
channelr1 ! cfr1, cmd1;

:: error1 == 1 ->
delay(channeldelay1, MAXLATENCY);
ec1flag[cfr1] = 0;

fi;
randombabbleinchannel1();

od;
}

and sets the value of a boolean variable babblechk to 1, otherwise babblecheck is set to
0. If babblechk is 1, it is simply made 0. If babblechk is 0, i.e., when the received frame
is not a babbled one, the Receiver checks if the received frame number is 0. In that
case, a boolean variable resetflag is set to 1 which represents the fact that the Receiver
is reset. A variable psnr, which denotes the currently received frame is set to 0. A list
is maintained with the Receiver to hold the frames which arrives at the receiving end
out of order. If the Received frame is not 0, then it is checked if a frame with the same
number is already in the list. If that is the case then the frame is delivered to the upper
level of the protocol stack. This is done by the deliverframe function (Listing 3). In this
function, after delivering the first frame it is checked whether the other frames in the
list are in order. Then all those frames are delivered to the upper level of the protocol
stack.

The frames which are delivered are modeled by an array rfflag[256]. If a frame is
successfully delivered then the corresponding array element is made 1. If the received
frame is not present in the list, then it checks if it is the next expected frame (rfr ==
psnr + 1). If it is so, then the frame and the other enlisted frames those are in order
are delivered by the deliverframe function. If the received frame number is more than
the expected frame number (rfr > psnr + 1) then the frame is inserted into the list
by insertframeinlist function. If the received frame number is less than the expected

A Finite State Modeling of AFDX Frame Management Using Spin 239

Listing 3. Inline Function to Deliver Frames to the Upper Level of the Protocol Stack

inline deliverframe(element) {
byte j, k;
rfflag[element] = 1;
psnr = element;
j =0;
do
:: psnr < 255 ->

if
:: listelement[j] == psnr +1 ->

rfflag[listelement[j]] = 1;
psnr = listelement[j];
j++;

:: listelement[j] != psnr + 1 ->
break;

fi;
:: psnr == 255 ->

if
:: listelement[j] == 1 ->

rfflag[listelement[j]] = 1;
psnr = listelement[j];
j++;

:: listelement[j] != 1 ->
break;

fi;
od;
k = j;
do
:: k < numoflistelements ->

listelement[k] = listelement[k-j];
k++;

:: k >= numoflistelements ->
break;

od;
numoflistelements = numoflistelements - j;

}

frame number (rfr < psnr + 1), the frame is simply discarded. The part in which the
Receiver process receives a frame from Channel 1 is shown in Listing 4.

5 Verification Results and Analysis

In the model of AFDX frame management design we check our specification against
the following properties. Integer time verification (digitization) techniques suffice if the
problem of whether all real numbered behaviors of a system satisfy a property can be re-
duced to the question of whether the integral observations satisfy a (possibly modified)
property [11]. This reduction is possible for qualitative properties for timed transitions

240 I. Saha and S. Roy

Listing 4. Part of the Model of the Receiving End-System
atomic {

verify(rfr1, rmd1);
if
:: babblechk == 0 ->

if
:: rfr1 != 0 ->

ispresentinlist(rfr1);
if
:: ispresentflag == 0 ->

if
:: rfr1 = psnr + 1 ->

deliverframetoendsystem(rfr1);
:: rfr1 > psnr + 1->

insertframeinlist(rfr1);
:: rfr1 < psnr + 1 ->
fi;

:: ispresentflag == 1 ->
deliverframetoendsystem(rfr1);

:: else ->
fi;

:: rfr1 ==0 ->
resetflag = 1;

psnr = 0;
fi;

:: babblechk == 1->
babblechk = 0;

fi;
}
\vspace{-2mm}

systems. Since we will be considering only qualitative properties (no explicit statement
of time is involved in the properties) we can use discretized models.

Progression of Time (POT). Naturally we would like to avoid situations when the
passage of time is blocked (referred to as zero cycle in [6]). We do this by checking
the system against the property �♦ timeout.

Rejection of Babbling Frame (RBF). A babbling frame is never accepted by the re-
ceiver. We model this as: a babbling channel on either channel is rejected by the
receiver.

�((p ∨ q) → ♦r),

where p
def= babble1 == 1, q

def= babble2 == 1, r
def= babblechk == 1.

A Finite State Modeling of AFDX Frame Management Using Spin 241

Reset at both ends (RST). A receiving end-system reset implies a transmitting end-
system reset.

�(s → t),

where s
def= resetf lag == 1, t

def= rchk == 1.

Data Consistency (DC). If a valid and non-redundant frame is delivered then it is not
discarded. We model this as: if both the redundant copies of a frame are not in error,
then eventually that frame will be received by the receiver.

�((p1 ∧ q1) → ♦r1),

where p1
def= ec1flag[1] == 1, q1

def= ec2flag[1] == 1, r1
def= rfflag[1] == 1.

Table 1. Computational resources required for the basic model

Properties States stored States matched Transitions Time
usage (visited + matched) (in min.)

POT 2.65978e+06 8.20632e+06 1.35252e+07 21
RBF 2.65039e+06 7.69169e+06 1.1812e+07 19
RST 2.53634e+06 3.08398e+06 5.62032e+06 6
DC 272152 271036 814228 < 1

We use xspin on an Intel (R) P4 machine with speed 2.60 GHz and RAM 256 MB on
a platform of Windows 2000. Table 1 illustrates the computational resources required
for state space generation for the properties verified. (with the partial order reduction
option kept on). All the properties are proved to be valid as expected for our modified
model. RBF is valid as the receiving end is able to authenticate the message it receives.
Since any babbled reset frame is not accepted RST is also valid. The validity of DC
follows from the fact that any frame that comes out of order is inserted into the queue
and later on delivered to upper level of the protocol stack at an appropriate time.

6 Conclusion

The ARINC-664 [3] is a commercial standard for the avionics communication archi-
tecture. The AFDX [4] is a vendor specific implementation of this standard. It is based
on the 802.3 standard Ethernet with enhancements to ensure determinism and reliabil-
ity. An overview of a switched Ethernet avionics network along with testing challenges
are identified in [16]. Their work mainly concentrates on hardware testing of various
modules through simulation. The first verification effort on AFDX is reported in [1].
The authors formally model and analyze the design of the AFDX frame management
under different faults. Their model was developed using UPPAAL, a freely available
tool [7] that allows modeling with a flavor of timed automata, called the Timed Safety

242 I. Saha and S. Roy

Automata [8]. The model-checker in UPPAAL allows specifying queries using a sim-
plified version of CTL.

We model AFDX frame management design in Promela language and specify the
properties in LTL and model check those properties in Spin [12]. A finite state analysis
of the design has produced very encouraging results though we have used a model
of discrete time. We do also stress that discrete-time models are sufficient for a large
class of practical applications [11]. In [1] no performance analysis of the modeling
and verification experiment has been provided. That is why we could not compare the
UPPAAL model and our Spin model in terms of memory and time requirement to verify
the desired properties, though it might be a useful work. In future we are planing to
model our modified AFDX protocol in UPPAAL, and compare its performance with
that of the model written in Spin. Also, we plan to design the frame management in
a modeling framework based on event calenders [9] that would enable us to capture a
dense time semantics.

In [10], Gong et. al. have studied authentication in the Byzantine agreement in toler-
ating hybrid and link faults by adding a signature field to the message. In fault-tolerant
systems based on state machine approach, replicated processors are required to agree on
a single-source data (such as sensor samples). This is called the Byzantine Agreement.
There are some protocols which achieve Byzantine Agreement. By adding authentica-
tion to variants of Oral Messages protocol the authors have able to show the increase
in the number faults tolerated by the protocols in presence of the authentication mech-
anism, The protocols do not also compromise their innate fault tolerance if those as-
sumptions were violated. Further, assuming authentication they also show that one of
these protocols can tolerate as many hybrid faults as the classical Signed Messages pro-
tocol. Using their framework it could be interesting to study whether our AFDX frame
management scheme would meet Byzantine Agreement.

Acknowledgement. The authors would like to thank Darren Cofer and Madhukar
Anand for helpful suggestions about the problem.

References

1. Anand, M., Vestal, S., Dajani-Brown, S., Lee, I:. Formal Modeling and Analysis of the AFDX
Frame Management Design. Proceedings of 9th IEEE International Symposium on Object
and component-oriented Real-time distributed Computing (2006).

2. Alur R., Dill, D. L.: A Theory of Timed Automata. Theoretical Computer Science, Vol. 126
(2) (1994) 183–235.

3. ARINC. Specification 664: Aircraft Data Network, Part 7 - Deterministic Networks. (Draft
2) (Oct 10, 2003).

4. ARINC. Arinc Project Paper 664: Aircraft Data Network, Part 7 - Avionics Full Duplex
Switched Ethernet (afdx) Network (2005).

5. Bos̆anac̆ki, D., Dams, D.: Integrating Real Time into Spin: A Prototype Implementation.
Proceedings of the FORTE/PSTV XVIII conference. Kluwer (1998) 423-439.

6. Bos̆anac̆ki, D., Dams, D.: Discrete-Time Promela and Spin. Proceedings of Formal Tech-
niques in Real-Time and Fault-Tolerant Systems FTRFT. LNCS, Vol. 1486. Springer-Verlag,
(1998) 307-310.

A Finite State Modeling of AFDX Frame Management Using Spin 243

7. Behrmann, G., David, A., Larsen, K.G.: A Tutorial on UPPAAL. In 4th International School
on Formal Methods for the Design of Computer, Communication, and Software Systems,
SFM-RT 2004. LNCS, Vol. 3185. Springer-Verlag, (2004) 200–236.

8. Bengtsson, J., Yi, W.,: Timed automata: Semantics, algorithms and tools. Lecture Notes on
Concurrency and Petri Nets, W. Reisig and G. Rozenberg (eds.). LNCS, Vol. 3098. Springer-
Verlag (2004).

9. Dutertre, B., Sorea, M.: Modeling and Verification of a Fault-Tolerant Real-Time Startup
Protocol using Calendar Automata. Proceedings of FORMATS/FTRTFT’04 (2004).

10. Gong, L, Lincoln, P., Rushby, J.: Byzantine Agreement with Authentication: Observations
and Applications in Tolerating Hybrid and Link Faults. Presented at Dependable Computing
for Critical Applications–5, Champaign, IL. IEEE Computer Society Press (19995) 139-157.

11. Henzinger, T., Manna, Z., Pnueli, A., What good are digital clocks? Proceedings of the
ICALP’92. LNCS, Vol. 623. Springer-Verlag (1992) 545–558.

12. Holtzman, G. J.: The SPIN Model Checker, Primer and Reference Manual. Addison-Wesley
(2003).

13. IEEE. Std.802.3:Information Technology. (1998).
14. Menezes, A. J., van Oorschot, P. C., Vanstone, S. A.: Handbook of Applied Cryptography.

CRC Press, Fifth reprint (2001).
15. Stinson, D. G.: Cryptography: Theory and Practice. 2nd Edition, Chapman & Hall/CRC

(2002).
16. Bisson K., Troshynski, T.: Switched Ethernet Testing for Avionics Applications. Proceedings

of IEEE Systems Readiness Technology Conference (2003) 546–550.
17. Tripakis, S., Courcoubetis, C.: Extending Promela and Spin for Real Time. Proceedings of

TACAS’96. LNCS, Vol. 1055. Springer-Verlag (1996).

UML 2.0 State Machines:
Complete Formal Semantics Via Core State Machines�

Harald Fecher and Jens Schönborn

Christian-Albrechts-University at Kiel, Germany
hf@informatik.uni-kiel.de,jes@informatik.uni-kiel.de

Abstract. UML has become the standard modeling language for object-oriented
systems. The informal description of UML and its continuous extension cause
many ambiguities. Therefore, a formal semantics for UML is necessary, espe-
cially for formal reasoning and tool development. We present a formal semantics
of UML 2.0 state machines, which are used for modeling the reactive behavior
of objects, by (i) deriving core state machines with fewer design features and a
precise syntax, (ii) developing a formal semantics for core state machines, and
(iii) presenting a complete transformation from UML 2.0 state machines to core
state machines. Such a transformational approach provides the opportunity of
easy adaption to future changes of the semantics of UML state machines.

1 Introduction

UML [8] has become the standard modeling language for object-oriented systems. It
constitutes the de-facto-standard for industrial applications in many areas - especially
in the object-oriented domain, but it also gains in importance for modeling embedded
real-time systems. Its advantages are given by a great variety of intuitive and mostly
well-known notations for different kinds of information to be specified: requirements,
static structure, interactive and dynamic behavior, as well as physical implementation
structures. However, it suffers from an insufficiently precise definition. This and the
continuous extension of UML cause many ambiguities and inconsistencies, see, e.g.,
[9, 3, 10]. Therefore, a formal semantics for UML is necessary, especially for formal
reasoning and tool development.

A standard technique to handle such high complexities is to derive a sublanguage,
sometimes called core language, for which a precise syntax and a formal semantics are
defined. Then the semantics of the original language is given via transformation into
the core language. Having such a transformational approach for UML state machines
semantics provides, e.g., the opportunity of easy adaption to future changes and inde-
pendent examination and tool development can be build on the core languages.

In this paper we focus on defining a complete formal semantics of single UML 2.0
state machines, which are one of the most important constituents of UML, since they are
widely used for modeling the reactive behavior of objects. UML state machines have
evolved from Harel’s statecharts [6] and their object-oriented version [5]. In particular,
our contributions are:
� Part of this work is financially supported by DFG project Refism (FE 942/1-1).

L. Brim et al. (Eds.): FMICS and PDMC 2006, LNCS 4346, pp. 244–260, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

hf@informatik.uni-kiel.de, jes@informatik.uni-kiel.de

UML 2.0 State Machines 245

– In Section 3, we present core state machines consisting of composite and final
states, regions, choice and entry/exit pseudostates, internal/external transitions, do
actions, and event deferral.

– In Section 4, we present a formal semantics of core state machines in terms of
transition systems, which are chosen as semantical model in order to enhance read-
ability. A translation of our semantics to abstract state machines [4], which are more
suitable for verification, can be straightforwardly defined.

– In Section 5, we give a transformation from UML 2.0 state machines into core state
machines such that a precise semantics coincident with the UML standard is ob-
tained. In particular, all aspects of single UML 2.0 state machines, i.e., join, fork,
junction, choice, entry, exit, history, initial pseudostates, do, entry, exit actions,
event deferral, completion, local, internal, external, conflicting transitions, and pri-
ority relations between transitions are handled. Parameters on events, which are
omitted for readability, can straightforwardly be added. By this transformation, we
rule out the ambiguities and inconsistencies of UML 2.0 state machines observed
earlier by us in [3], where possible solutions are illustrated.

– Especially, we handle the following non-trivial aspects that are in our opinion not
adequately handled in the literature: choice pseudostates (including the decision
which state is left at which point in time); the order of execution of actions of
compound transitions (including entry/exit pseudostates); transitions pointing to a
history pseudostate from inside its containing region; the effect that event deferral
can have priority over transition firing.

Note that core state machines can also be reused as semantical basis for other variations
of statecharts.

Related work. For an overview of existing formal semantics of UML state machines
see [1], where 26 different approaches to the semantics are well compared. We only
discuss the most relevant works in detail. All of the cited papers there, except of [11]
and a technical report of us [2] consider previous versions of UML state machines,
i.e., they do not deal with UML 2.0 state machines. This is significant, since there
have been major changes and additions in the syntax and semantics, i.e., entry/exit
pseudostates are allowed at any composite state, the concept of local transitions has
been added, and event deferral can have priority over transition firing. None of these
challenging aspects are considered in [11], where only a small subset of UML 2.0 state
machines is considered. In contrast to our technical report [2], we now handle entry/exit
pseudostates at any composite state and the fact that event deferral can have priority
over transition firing, as well as choice pseudostates and completion transitions. It is not
obvious how the existing semantics can be extended to handle exit/entry pseudostates
at any composite state, i.e., how to define a formalization for the order of execution of
the actions of compound transitions.

The paper that handles most state machines aspects is [7]. Besides the new aspects
of UML 2.0 state machines, the authors do not address in detail the order of execution
of actions (which already occurs in earlier UML versions by, e.g., the usage of join/fork
pseudostates). All other works mentioned in [1] handle fewer aspects than [7].

246 H. Fecher and J. Schönborn

d1,o1,i1
H�������	

���	����• H∗�������	 • �

•
o2,i2

���	����•
�
������×

o3,i3,(e,[g3],α3)

��������

d4,o4,i4
{e1}

�
������
•

�
������

��
e ��

�e

������
e[g1]
��

����
[g2]
���

����

α
�����

��

[g3]

��

[else] �� α �� e α1 ��
α2�� ������
α3��

		����
��

α1 �� α2 ��

��			 e

e1 ��

e1 �� [g1]α1 ��
[g2]α2������

���� e[g3]α3

���
��

�

e α
��

Fig. 1. A UML 2.0 state machine. Here we depict states as rectangular, final states as circles
surrounding a solid filled smaller circle, shallow (deep) history pseudostates as circles containing
‘H’ (resp. ‘H*’), initial/junction pseudostates as solid filled circles, join/fork as fat lines, choice
pseudostates as diamond-shaped symbols, and entry (exit) pseudostates as small circles (resp., as
small circles with a cross) on the border of the state. Regions are separated by dashed lines. The
set of events deferred at a state is written inside the state. Transition labels divide or are written
closely to the transition, where guard true and action skip are omitted. Events are written as e,
guards as g, and transition actions as α, possibly attached with indices. One of the transitions
outgoing a choice or a junction pseudostate may be labeled with guard [else]. Transitions with
an additional label � have type local. Do, exit, entry actions and internal transitions are written,
if present, in a small box in the upper right corner of the corresponding state via d, o, i, (e[g]α),
respectively.

2 Informal Description of UML 2.0 State Machines

Before we give the informal description, we refer to Figure 1, where a state machine
is illustrated. Note that this picture is mainly used to illustrate our transformation in
Section 5 and therefore is not always meaningful, e.g., the final states are meaningless,
since no transitions pointing to them.

The basic concepts of UML 2.0 state machines are states and transitions between
states. A state may contain regions (called direct subregions of that state) and a region
must contain states (called direct substates of that region) such that this hierarchy yields
a tree structure. A configuration describes the currently active states, where exactly one
direct substate of an active region must be active and all regions of an active state must
be active. Entering a state (via firing a transition) corresponds to its activation whereas
exiting a state corresponds to its deactivation. A state may have entry actions (executed
when the state is entered), exit actions (executed when the state is left), and do actions
((partly) executed as long as the state is active). In the following, executing do actions
means (partial) execution of such actions. The environment may send events to the state
machine. These are collected in the event pool of the state machine. A state machine
may either execute do actions of active states or may dispatch a single event from its
event pool to trigger transitions. UML state machines follow the run-to-completion as-
sumption, i.e., “an event occurrence can only be taken from the pool and dispatched
if the processing of the previous current occurrence is fully completed” [8, p. 546].
Furthermore, a dispatched event that does not trigger transitions is either discarded or
deferred, if there is an active state that is specified to defer the corresponding event.
When a state completes its do actions and only final states (that are special states with-
out outgoing transitions) are active in its subregions, then a completion transition1 of

1 Encoded via compound transitions having no event.

UML 2.0 State Machines 247

that state, selected depending on the guard, becomes enabled. The completion transition
has to be fired before another event can be dispatched.

Besides its source and target, a transition consists of an event (optional), a guard (a
boolean expression), and actions. Join and fork pseudostates, which may also be source
and target of transitions, are used to collect different transitions into a compound tran-
sition having a set of sources and a set of targets. Note that further pseudostates, which
will be discussed later, are used to obtain more complex compound transitions. A com-
pound transition is enabled if its source state is currently active, its event is dispatched
from the event pool, and its guard evaluates to true. Among the enabled transitions a
maximal set of pairwise conflict-free elements is fired. Two compound transitions are in
conflict if the intersection of the sets of states that will be left by firing these transitions
is non empty. An active state s will be exited by firing transition t if, roughly speak-
ing, the target of t is not a substate of s. A non-active state s will be entered by firing
transition t if, roughly speaking, (i) s is the target of t, (ii) the target of t is a substate
of s or (iii) s is an element of a recursively defined chain of substates (by using initial
pseudostates) from the target of t. Furthermore, a priority relation determining which
one of conflicting and enabled compound transitions will fire exists. But this relation
does not resolve nondeterminism completely. Roughly speaking compound transitions
having deeper nested source states have priority. The firing of a compound transition t
leads, in this order, to (i) exiting the corresponding states together with the execution of
their exit actions, (ii) the execution of the actions of t, and (iii) entering the correspond-
ing states together with the execution of their entry actions. The order of the action
execution can be changed (to a certain degree) by using exit and entry pseudostates: the
actions of the states and transitions that are above the exit (below the entry) pseudostates
are executed after the actions of the states and transitions that are below the exit (resp.,
above the entry) pseudostates w.r.t. state hierarchy.

Further pseudostates are junction pseudostates, that are a shorthand notation for the
set of transitions obtained by combining any incoming with any outgoing transition;
choice pseudostates lead to a new decision, where the effects of the previously exe-
cuted transitions are taken into account when determining the outgoing transition to be
fired; history pseudostates activate those substates of the region, to which the history
pseudostate belongs, that were active when the region was the last time active. The
shallow-history pseudostates consider only the direct substates of a region r, whereas
deep history pseudostates consider also deeper nested substates. In case r was not active
before or the last active direct substate of r is a final state, the history default transition,
that is the (unique) transition leaving the history pseudostate, is fired instead. Further-
more, a transition can be external, local, or internal. An internal transition does not exit
any state and a local compound transition does not exit its source state, but its substates.

3 Syntax of Core State Machines

Core state machines, derived from UML 2.0 state machines, use only composite and
final states, regions, do actions, event deferral, and choice, entry, exit pseudostates.
No interlevel transitions, i.e., transitions crossing a state border, are allowed, instead
additional exit, entry pseudostates are used. Default exit and entry must be explicitly

248 H. Fecher and J. Schönborn

modeled. Exit and entry pseudostates are used as junction as well as join (resp., fork)
pseudostates in some sense and have, therefore, a slightly augmented meaning as in
UML 2.0. We use three different kinds of exit pseudostates: a normal one, a priority
relevant one, and a completion relevant one, which is only ‘enabled’ if the do actions of
the corresponding state have terminated (but not necessarily its corresponding regions).
States are only allowed as sources and targets of internal transitions. Two additional
predicates, occurring in guards of transitions, are used for the modeling of history en-
try. This construct classification is summarized below.

core constructs derived constructs
unmodified modified

composite and final states, re-
gions, do actions, event defer-
ral, choice, external/local tran-
sitions, completion

exit (pr, npr, cp) and en-
try pseudostates

interlevel transitions, join/fork,
junction, history, exit and entry
pseudostates, internal transitions,
initial pseudostates

Definition 1 (States & regions). S denotes a set of states, partitioned into composite,
final, exit, entry, and choice states, denoted by Scom, Sfin, Sexit, Sentry, and Schoice, re-
spectively. Furthermore, Sexit is partitioned into priority, non-priority, and completion
(relevant) exit states, denoted by Spr

exit, Snpr
exit, and Scp

exit, respectively. Set S is consistent
with a set of regions R and parent function parent if the outermost region, denoted by
ε, is contained in R, parent maps composite, final, and choice states to regions, maps
regions (different from ε) and entry states to composite states, and maps exit states to
composite or final states such that the derived containing relation � defined as the
transitive closure of {(z, parent(z)) | z ∈ S ∪ R \ {ε}} is irreflexive.

Note that for technical reasons we also allow that exit states belong to final states and
not only to composite states. In the following, we assume fixed S, R, and parent such
that S is consistent w.r.t. R and parent. Furthermore, � denotes the derived containing
relation from parent and � denotes the reflexive closure of �. Moreover, functions
stateOf : S → (Scom∪Sfin∪Schoice) and regOf : S → R yield the deepest composite,
final, or choice state (resp. region) that contains the argument. Formally:

stateOf(s) =
{

s if s ∈ Scom ∪ Sfin ∪ Schoice
parent(s) otherwise

regOf(s) = parent(stateOf(s))

In the following definition, we introduce the sets of actions, events, and guards,
whose elements are, e.g., used as transition labels.

Definition 2 (Actions). An action is a sequence of atomic actions (like changing value
of attributes, sending signals, and creating new objects). In the following, we will use
symbol Actions to denote the set of all actions. Let skip ∈ Actions denote the ter-
mination of the sequence execution. Furthermore, let (B, Actions, �,

√
) be a labeled

transition system having a labeled termination predicate, i.e., B is the set of transition

UML 2.0 State Machines 249

system states, �⊆ B×Actions×B, and
√ ⊆ B×Actions, where (B, α) ∈ √

indicates
that an execution of α which leads to termination is possible. To simplify definitions, we
assume skip ∈ B with (skip, skip) ∈ √

and ∀(B, α, B′) ∈�: B
= skip.

Note that B is later used to model interleaving points. More precisely, B ∈ B en-
codes, roughly speaking, a set of sequences of actions; between every action of such
a sequence ϑ an interleaving point exists, i.e., another action (of a transition firing in
parallel) can be executed before ϑ is continued. Note that do actions can interleave at
any point, not necessarily at the modeled interleaving points. In particular, transitions of
the state machines will be labeled with elements of B instead of Actions, compare with
Section 5.

Definition 3 (Events/guards). Set E denotes the set of all events and set G denotes a
set of boolean expressions, which depend on global information such as the attribute
values of the objects. Furthermore, the atomic predicates wla and nab are contained
in G, where wla indicates that the target state of the transition having wla as guard
was last active and nab indicates that the region of the target state of the transition
having nab as guard was not active before. These two atomic predicates are later used
to model UML 2.0 history pseudostates.

Next we define what are allowed transitions between states:

Definition 4 (Transitions). A transition t w.r.t. a set of states S is a tuple (s1, e, g,B,s2)
such that:

– s1 ∈ S \ Sfin (i.e., s1 ∈ Sexit ∪ Sentry ∪ Schoice ∪ Scom) is called its source state,
– s2 ∈ S its target state where

• exactly the internal transitions have composite states as sources or as target,
in which case the source and target must also be equal, i.e.,
(s1 ∈ Scom ∨ s2 ∈ Scom) ⇒ s1 = s2

• transitions targeting exit pseudostates have exit pseudostates as source, i.e.,
s2 ∈ Sexit ⇒ s1 ∈ Sexit,

• exit pseudostates may only be the source of transitions targeting exit
pseudostates at exactly one level higher in the state hierarchy or targeting non-
exit pseudostate states at the same level of hierarchy, i.e.,
(s1 ∈ Sexit ∧ s2 ∈ Sexit) ⇒ stateOf(stateOf(s1)) = stateOf(s2) and
(s1 ∈ Sexit ∧ s2 /∈ Sexit) ⇒ regOf(s2) = regOf(s1),

• transitions outgoing from exit pseudostates of final states may only target exit
pseudostates, i.e., stateOf(s1) ∈ Sfin ⇒ s2 ∈ Sexit,

• transitions outgoing from entry pseudostates may only have targets at one level
of hierarchy downwards, i.e.,
s1 ∈ Sentry ⇒ stateOf(stateOf(s2)) = stateOf(s1), and

• choice pseudostates must have targets at the same level of hierarchy, i.e.,
s1 ∈ Schoice ⇒ regOf(s1) = regOf(s2).

– e ∈ E ∪ {∅} is called its necessary event (which has to be provided to enable
the transition), where events may not occur at transitions leaving entry or choice
pseudostates, i.e., e
= ∅ ⇒ s1 ∈ Sexit ∪ Sint,

250 H. Fecher and J. Schönborn

– g ∈ G is called its guard, constraining the necessary condition for the enabling of
the transition, and

– B ∈ B is called its action encoding.

The projections of transitions to the corresponding components are denoted by πsor,
πev, πgua, πact, and πtar, respectively. Furthermore, the direct subregions of a compos-
ite state s ∈ Scom are given by

dsr(s) = {r ∈ R | parent(r) = s}

Now we are ready to present the syntax of core state machines, where P(U) denotes the
power set of set U :

Definition 5 (Core state machines). A core state machine M is a tuple

((S, R, parent), doAct, defer, T, sstart, Var, σinit) , where

– S is a set of states that is consistent w.r.t. the set of regions R and with function
parent,

– doAct : Scom → Act assigns to each state the do action that can be executed when
the state is active,

– defer : E → P(Scom) assigns to each event those states in which it will be deferred,
– T is a set of transitions w.r.t. S, where Tint denotes the set of the singleton sets of

internal transitions, i.e., Tint = {{t} | t ∈ T ∧ πsor(t) ∈ Scom},
– sstart ∈ Scom its initial state belonging to the uppermost region and having no

subregions, i.e., regOf(sstart) = ε ∧ dsr(s) = ∅,
– Var a set of variables ranging over some fixed domain, and
– σinit ∈ VarAss its initial variable assignment, where VarAss denotes the set of all

possible variable assignments over Var.

Note that if an entry pseudostate s is ‘active’ and there is a direct subregion ‘of’ s for
which no enabled transition outgoing s points to (which is, in particular, the case if the
state contains a region that does not contain a state), a deadlock occurs (this situation
corresponds to the absence of initial pseudostates in UML state machines). A similar
case arises if there is no enabled transition leaving an ‘active’ choice pseudostate. Note
that this situation is ill-formed in UML 2.0 [8, p. 523].

In the following, ((S, R, parent), doAct, defer, T, sstart, Var, σinit) denotes a fixed
core state machine M . Next we define the compound transitions CoTr of a core state
machine. A compound transition is either a set consisting of one internal transition
(∈ Tint) or a collection of (non-internal) transitions such that a single outermost state
is exited. Note that here, contrary to UML state machines, only transitions outgoing
exit pseudostates are collected in a compound transition. This is formalized by using
function Υ : Sexit → P(P(T)), where Υ (s) collects all sets of transitions ‘below’ s that
can belong to a compound transition that ‘includes’ s. Formally:

Υ (s) =
{⋃

r∈dsr(s)({f(r)} ∪ F (r))
∣∣ f : dsr(s) → T ∧ F : dsr(s) → P(T) ∧

∀r ∈ dsr(s) : πtar(f(r)) = s ∧ regOf(πsor(f(r))) = r ∧ F (r) ∈ Υ (πsor(f(r)))
}

CoTr={{t} ∪ T | t ∈ T ∧ πsor(t) ∈ Sexit∧ πtar(t) /∈ Sexit ∧ T ∈ Υ (πsor(t))} ∪ Tint

UML 2.0 State Machines 251

Note that exit states not targeted by transitions from all direct subregions may not
occur in a compound transition. In order to simplify definitions, we also allow that
different events may occur in a compound transition. This is not problematic, since
compound transitions where more than one event occurs cannot be enabled.

4 Formal Semantics of Core State Machines

A history maps a region r to its direct substate that was active the last time the region
was left. If the region was not active before (or a final state was last active), r is mapped
to the default value ⊥.2 Therefore, the set of histories is

H =
{
H : R → Scom ∪ Sfin ∪ {⊥} | ∀r ∈ R : H(r)
= ⊥ ⇒ r = regOf(H(r))

}
,

Configurations describe a snapshot of a state machine execution. They are introduced
below, where we, in order to simplify the definition, allow configurations that cannot
occur during execution.

Definition 6. A csm-configuration C w.r.t. M is a tuple (σ, A, do,H,α, s̈, β,T,T̈) where

– σ ∈ VarAss, denoting the current variable assignment,
– A ⊆ Scom ∪ Sfin, denoting which states are currently active,
– do : Scom → Act denoting the corresponding do actions which remain to be exe-

cuted,
– H ∈ H, denoting its current history information,
– α ∈ Actions, denoting the action that has to be executed next w.r.t. transition exe-

cution,
– s̈ ∈ {∅} ∪ Sfin ∪ Sexit ∪ Sentry ∪ Schoice, denoting the (pseudo)state that has to be

activated after α is completed,
– β ⊆ B × ({∅} ∪ Sfin ∪ Sexit ∪ Sentry ∪ Schoice), denoting the currently executing

transitions (i.e., remaining actions and target states),
– T ∈ CoTr ∪ {∅}, denoting the currently executing compound transition, and
– T̈ ⊆ CoTr, denoting the compound transitions that are left to be executed in order

to complete the run-to-completion step.

The initial csm-configuration is

(σinit, {sstart}, doAct, {(ε, sstart)} ∪ {(r, ⊥) | r ∈ R \ {ε}}, skip, ∅, ∅, ∅, ∅).

In the following we give some preliminaries for the definition of the relation between
csm-configurations.

We assume that a function eval : (VarAss × H × S) → P(G), that evaluates the
guards, is given such that wla holds in eval(σ, H, s) if ‘s’ was the last active state of
the corresponding region, i.e., wla ∈ eval(σ, H, s) ⇔ H(regOf(s)) = stateOf(s), and
nab holds in eval(σ, H, s) if the region of ‘s’ was not visited before or a final state was

2 Note that the history information is ambiguous in UML 2.0 [8], e.g., it is not clear if the last
active subconfiguration instead of the subconfiguration generated by the corresponding last
active states is chosen, see [3] for more detail.

252 H. Fecher and J. Schönborn

last active there, i.e., nab ∈ eval(σ, H, s) ⇔ H(regOf(s)) ∈ {⊥} ∪ Sfin. A compound
transition is enabled for trigger e ∈ E ∪ {∅}, variable assignment σ, active states A,
history H , and current do actions of the active states: if the sources of its transitions
are active, if the triggers of all of its transitions are in e, if the guards of its transitions
evaluate to true, and if the do actions are terminated for its transitions having elements
from Scp

exit as its sources. Formally:

Enablee,σ,A,H,do =
{
T ∈ CoTr | ∀t ∈ T : stateOf(πsor(t)) ∈ A ∧ πev(t) ⊆ {e} ∧

πgua(t) ∈ eval(σ, H, πtar(t)) ∧ (πsor(t) ∈ Scp
exit ⇒ do(stateOf(πsor(t)))=skip)

}

Two compound transitions are in conflict if their states that have to be left (for an inter-
nal transition: the set consisting of its source state) are not disjoint. Formally:

Conflict = {(T1, T2) ∈ CoTr × CoTr | stateOf(πsor(T1)) ∩ stateOf(πsor(T2))
= ∅}

Note that two internal transition of the same state are in conflict with each other. Note
that in UML no two internal transitions of the same state can be enabled at the same time
[8, p. 539]. A compound transition T1 has priority over another one T2 if every priority
relevant source state of T1 is a substate of a priority relevant source state of T2, i.e.,
PrBelow(T1, T2) ⇐⇒ ∀t1 ∈ T1 : πsor(t1) ∈ Spr

exit ∪ Scom ⇒ ∃t2 ∈ T2 : πsor(t2) ∈
Spr

exit ∪ Scom ∧ stateOf(πsor(t2)) � stateOf(πsor(t1)), and one of the highest priority
relevant source states of T1 is a proper substate. The later fact is here equivalent to the
existence of a priority relevant source state of T2, for which no upper or at the same level
priority relevant source state of T1 exists, i.e., PrStrBelow(T1, T2) ⇐⇒ ∃t2 ∈ T2 :
πsor(t2) ∈ Spr

exit∪Scom∧∀t1 ∈ T1 : πsor(t1) ∈ Spr
exit∪Scom ⇒ ¬(stateOf(πsor(t1)) �

stateOf(πsor(t2))):

Priority = {(T1, T2) ∈ CoTr × CoTr | PrBelow(T1, T2) ∧ PrStrBelow(T1, T2)}

Note that the outermost prioritized exit pseudostates decide about priority. A set of com-
pound transitions is fire-able if it is a non-empty maximal set of enabled and conflict-
free compound transitions such that no enabled compound transition with higher
priority exists. The non-emptiness is used to model deferral of an event, which is only
possible if no corresponding fire-able compound transition exists. Formally:

Fireablee,σ,A,H,do = {T̈ ⊆ Enablee,σ,A,H,do | T̈
= ∅ ∧ ∀T ′ ∈ Enablee,σ,A,H,do \ T̈ :
(∀T ∈ T̈ : (T ′, T) /∈ Priority) ∧ (∃T ∈ T̈ : (T, T ′) ∈ Conflict) ∧
∀T1, T2 ∈ T̈ : (T1, T2) ∈ Conflict ⇒ T1 = T2}

In the following, we assume that a function calc : (Actions × VarAss) → (L ×
Actions × VarAss), calculating the effect of action execution (observable communica-
tion [encoded via elements of a given set L], remaining actions, and obtained variable
assignment), is given. Furthermore, f [x �→ v], that is straightforwardly extended to se-
quences (xi �→ vi)i∈I , denotes the function that is everywhere equal to f except on x
(if it is in its range) where it is equal to v.

The rules defining the relation between csm-configurations is given in Table 1, where
a transition step without a label corresponds to an internal step. The rules are explained

UML 2.0 State Machines 253

Table 1. Configuration steps

do-act

s ∈ A ∩ Scom do(s) �= skip
calc(do(s), σ) = (�, α′, σ′) α = skip ⇒ s̈ = ∅

(σ, A, do, H,α, s̈, β, T, T̈)
�

� (σ′, A, do[s �→ α′], H, α, s̈, β, T, T̈)

cur-act
α �= skip calc(α, σ) = (�, α′, σ′)

(σ, A, do, H,α, s̈, β, T, T̈)
�� (σ′, A, do, H,α′, s̈, β, T, T̈)

next-tr-1
(B, s̈) ∈ β B

α
� B′ β′ = {(B′, s̈)} ∪ β \ {(B, s̈)}

(σ, A, do, H, skip, ∅, β, T, T̈) � (σ, A, do, H,α, ∅, β′, T, T̈)

next-tr-2
(B, s̈) ∈ β (B, α) ∈ √

β′ = β \ {(B, s̈)}
(σ, A, do, H, skip, ∅, β, T, T̈) � (σ, A, do, H, α, s̈, β′, T, T̈)

next-com

T ′ ∈ T̈ \ Tint β = {(skip, πsor(t)) | t ∈ T ′ ∧ ∀t′ ∈ T ′ :
¬(stateOf(πsor(t)) stateOf(πsor(t′)))}

(σ, A, do, H, skip, ∅, ∅, T, T̈) � (σ, A, do, H, skip, ∅, β, T ′, T̈ \ {T ′})

next-int
{t} ∈ T̈ ∩ Tint β = {(πact(t), ∅)}

(σ, A, do, H, skip, ∅, ∅, T, T̈) � (σ, A, do, H, skip, ∅, β, {t}, T̈ \ {{t}})

next-completion
T̈ ∈ Fireable∅,σ,A,H,do T ′ ∈ T̈

(σ, A, do, H, skip, ∅, ∅, T, ∅) � (σ, A, do, H, skip, ∅, ∅, T, {T ′})

next-trigger
e ∈ E Fireable∅,σ,A,H,do = ∅ T̈ ∈ Fireablee,σ,A,H,do

(σ, A, do, H, skip, ∅, ∅, T, ∅)
e� (σ, A, do, H, skip, ∅, ∅, T, T̈)

defer
defer(e) ∩ A �= ∅ Fireablee,σ,A,H,do = ∅

(σ, A, do, H, skip, ∅, ∅, T, ∅)
defer(e)

� (σ, A, do, H, skip, ∅, ∅, T, ∅)

a-fin
s̈ ∈ Sfin H ′ = (H [(r �→ ⊥)r∈R∩↑{regOf(s̈)}])

(σ, A, do, H, skip, s̈, β, T, T̈) � (σ, A ∪ {s̈}, do, H ′, skip, ∅, β, T, T̈)

a-ch
s̈ ∈ Schoice t ∈ T πsor(t) = s̈ πgua(t) ∈ eval(σ, H,πtar(t))

(σ, A, do, H, skip, s̈, β, T, T̈) � (σ, A, do, H, skip, ∅, β ∪ {(πact(t), πtar(t))}, T, T̈)

a-en

s̈ ∈ Sentry do′ = do[stateOf(s̈) �→ doAct(stateOf(s̈))]
f : dsr(stateOf(s̈)) → T β′ = β ∪

�

r∈dsr(stateOf(s̈))

{(πact(f(r)), πtar(f(r)))}

∀r ∈ dsr(stateOf(s̈)) : πsor(f(r)) = s̈ ∧ πgua(f(r)) ∈ eval(σ, H,πtar(t))
(σ, A, do, H, skip, s̈, β, T, T̈) � (σ, A ∪ {stateOf(s̈)}, do′, H, skip, ∅, β′, T, T̈)

a-ex-1

s̈ ∈ Sexit ∀(B, s̈′) ∈ β : s̈′ �= s̈ ∀s ∈ A : ¬(stateOf(s̈) s) t ∈ T
πsor(t) = s̈ β′ = β ∪ {(πact(t), πtar(t))} H ′ = H [regOf(s̈) �→ stateOf(s̈)]
(σ, A, do, H, skip, s̈, β, T, T̈) � (σ, A \ {stateOf(s̈)}, do, H ′, skip, ∅, β′, T, T̈)

a-ex-2
s̈ ∈ Sexit ∃B : (B, s̈) ∈ β ∨ ∃s ∈ A : stateOf(s̈) s

(σ, A, do, H, skip, s̈, β, T, T̈) � (σ, A, do, H, skip, ∅, β, T, T̈)

254 H. Fecher and J. Schönborn

below: RULE do-act describes an atomic action execution of a do action of an active
composite state, where condition α = skip ⇒ s̈ = ∅ ensures that the entry of a state
finishing the execution of a corresponding transition cannot be interleaved by a do ac-
tion. Note that a do action can also execute at any point during the execution of actions
of transitions. RULE cur-act describes the next atomic action execution of the atomic
action sequence currently being executed. RULES next-tr-1 and next-tr-2 select from
the transitions currently being fired ((B, s̈) ∈ β) a new atomic action sequence α (de-
termined from B

α
� B′, resp. (B, α) ∈ √

) that will be executed next. This is only
possible if no action has to be executed and no pseudostate has to be activated (s̈ = ∅).
In next-tr-2 , contrary to next-tr-1 , the target of the transition has to be activated after the
execution of α, since this completes the firing of the transition.

RULE next-com determines the next non-internal compound transition T ′ from T̈
which will be fired, that is only possible if the previous fired compound transition is
completed: no state has to be activated, no action and no transition remain to be ex-
ecuted. Furthermore, the deepest source exit pseudostates of T ′ are remembered to
be activated. This is done by using special transitions formed by deepest source exit
pseudostates of T ′ as targets and skip as actions. These transitions determine β. RULE

next-int determines the next internal transition {t} of T̈ which will be fired, that is only
possible if the previously fired compound transition is finished. RULE next-completion
determines the next trigger-free compound transition (which corresponds in UML to
transitions triggered by completion) that will be fired. This is only possible if the pre-
vious set of compound transitions is completely executed (which corresponds in UML
to the termination of the previous run to completion step). RULE next-trigger is simi-
lar to Rule next-completion except that transitions triggered by an event are considered.
Note that completion transitions have priority over triggered transitions, which is en-
sured by Fireable∅,σ,A,H,do = ∅ stating that no completion transition is enabled. RULE

defer describes the deferral of events, which is possible if a state that defers the event
is active and no completion transition and no compound transition having this trigger
is enabled.

RULE a-fin activates a final state s̈ directly contained in region r̈ = regOf(s̈) and
resets the history information of all subregions of r̈ to ⊥, since they are now considered
as not visited before [3]. RULE a-ch activates a choice pseudostate, where it is imme-
diately determined which of its currently enabled outgoing transitions is fired. RULE

a-en activates an entry pseudostate s, thereby the composite state s′ to which s be-
longs becomes active and the current do action of s′ is reset to the do action specified
in the state machine, i.e., it starts from the beginning also in the case of history entry.
Furthermore, as for choice pseudostates, it is immediately determined for every direct
subregion which one of the currently enabled outgoing transitions of state s is fired.
RULES acti-ex-1 and acti-ex-2 deal with the activation of exit pseudostates, that will
not happen if there is a transition with a source below the exit pseudostate, w.r.t. state
hierarchy, which has not yet been completely executed (Rule acti-ex-2). In the case of
activation (Rule acti-ex-1) the unique transition from T having the exit pseudostate as
source is added to β. Furthermore, the state to which the exit pseudostate belongs is
deactivated and the history information of the exited region is adapted.

UML 2.0 State Machines 255

5 Embedding of UML 2.0 State Machines

Many ambiguities in UML 2.0 state machines are resolved here along our suggestions
given in [3]. Another ambiguity, which is not mentioned in [3] concerns the influence
of event deferral on enabling transitions: “The conflict resolution [between deferring
or consuming] follows the triggering priorities, where nested states override enclosing
states. In case of a conflict between states in different orthogonal regions, a consumer
state overrides a deferring state.”[8, p. 536]. Consider, e.g., the two transition having
event e1 in Figure 1. Will the above transition fire, since the enabling the lower transition
avoids the deferral of the event? We decide that a compound transition with trigger e
is disabled if it has a source state that has a deeper state which defers e. Thus in our
example the upper transition will not fire in contrast to the other one.

The transformation of UML 2.0 state machines is divided into 5 succeeding steps.
In the following, prototype transitions are transitions with no event, with guard true,
and with action skip, except that the label is explicitly specified differently. Further-
more, the transition system encoding the transitions’ actions in core state machines is
built upon a simple process algebra consisting of actions, sequential composition, and
parallel composition without synchronization mechanism. Weak-compound transitions
combine transitions connected via join, fork, and junction pseudostates. Note that we
decide to use a not optimal transformation w.r.t. space, in order to increase understand-
ability. In order to increase comprehension, the UML 2.0 state machine of Figure 1 is
transformed along the different steps. Besides the resolving of junction pseudostates,
the complexity of the transformation is in O(n · t), where n is the number of states and
t the number of transitions.

Step 1: Here some simplifications are made: Replace every guard ‘else (resp., other-
wise)’ at a transition t, by the negation of the disjunction of the guards of the other tran-
sitions outgoing from the source of t. Replace a transition with a set of events as trigger
by copies of the transition, one for each event in the set, which yields the event label
of that copy. Resolve junction pseudostates, by introducing for every pair of incoming
and outgoing transitions a new transition labeled with the union of the events (must be
empty or singleton), with the conjunction of the guards, and the actions combined via
the sequential composition of the process algebra. Next, we ensure that no choice, entry,
exit pseudostate can occur in two different compound transitions: Copy choice, entry,
exit pseudostates, and adapt (including copying) the transitions such that every choice
and entry pseudostate has exactly one incoming transition, every exit pseudostate has
exactly one outgoing transition, and every direct subregion of the state corresponding
to an exit (entry) pseudostate has at most one transition pointing to (resp., leaving) this
exit (resp., entry) pseudostate. After applying Step 1 to the UML 2.0 state machine from
Figure 1 we obtain:

d1,o1,i1
H�������	

���	����• H∗�������	 �

•
o2,i2

���	����•
�
������×

o3,i3,(e,[g3],α3)

��������

d4,o4,i4
{e1}�
������ �
������

•
�
������

��
e ��

�e

������

�1=e[g1∧g2]

e[g1]α
���

�����

��

[g3]

��

[¬g3] �� α �� e α1 ��
α2�� ������
α3��

		����
����

α1 �� α2 ��

��			
��		

e 		�������
e1

��

e1 �� [g1]α1 ��
[g2]α2������

���� e[g3]α3

���
��

�

e α
��

256 H. Fecher and J. Schönborn

Step 2: In this step sources and targets become exit, resp., entry pseudostates and fur-
ther modifications making clear which states are left, resp., entered are made: For every
local transition t having its target below its source s add a new entry pseudostate at s,
which becomes the new target of t (note that t remains local), and add a prototype tran-
sition from the new entry pseudostate to the original target of t. Every weak-compound
transition of the current state machine is labeled by its event, by the conjunction of
its transitions’ guards, and by a process algebra term encoding its transitions’ actions.
Every exit pseudostate that does not have an incoming transition becomes a priority
relevant exit pseudostate, the other exit pseudostates become non-priority relevant exit
pseudostates. To every composite state add a so called default entry pseudostate. For
every transition t outgoing a composite state s, add a new completion (priority) exit
pseudostate to s if t belongs to a completion (resp., if t belongs to a non-completion)
compound transition and this exit pseudostate becomes the new source state of the
transition. Every transition targeting a composite state is redirected such that its tar-
get becomes the composite state’s default entry pseudostate. Next, we make explicit
which states of a compound transition are left (resp., entered): Divide by a new choice
pseudostate every weak-compound transition whose sources are different from choice
pseudostates and whose sources and targets are in two orthogonal regions (i.e., none
contains the other). This new choice pseudostate belongs to the deepest region that con-
tains all sources (and join pseudostates). The label of the old weak-compound transi-
tion is written at the weak-compound transition pointing to the new choice pseudostate,
whereas the weak-compound transition leaving the new choice pseudostate with no
event, with guard true, and with action skip as label. Thereafter, relocate every choice
pseudostate to the outermost region that can be reached via a chain of transitions starting
from the choice pseudostate, where transitions crossing regions reach also the lowest
region containing both those regions.3 After applying Step 2 on our running example
we obtain, where circled p (n, c) indicates priority (resp., non-priority, completion) exit
pseudostates:

d1,o1,i1�
������ H�������	

���	����• H∗�������	 �
��������

������p
������p

�
������

�

•
�
������
�
������p
�
������

o2,i2

�
������c�
������ ���	����•
�
������p�
������ �
������n

�
������

o3,i3,(e,[g3],α3)

��������

d4,o4,i4�
������p
{e1}�
������ �
������p

�
������ �
������
�
������ �
������

�
��������

������p
������p

• �
��������

������p
������p

�
������
�
������

�
������
�

��

e

��

�e ��
���
� �1��

����

e[g1]α�� ����

������

[g3]��

������
[¬g3] �� α �� �� ��

���������
�2=e α1;(α2‖α3) ����

α1 ����������������
α2

����
���

��		
�������
e

��������������
�������

e1
��������

e1 ���� �� ���
��

�

�3=e[g1∧g2∧g3]
(α1‖α2);α3

e α
�����������

Step 3: Intuitively, in this step a transition is divided by an exit (resp., entry)
pseudostate, where it crosses the border of a state. In order to handle also join and fork
pseudostates the transformation is precisely given: For every weak-compound transition
T having interlevel transitions, add a non-priority exit pseudostate at every composite
state that will be left by T and that strictly contains a source of T , and add an entry
pseudostate at every composite state that will be entered by T and that strictly contains
a target of T . Then connect those new pseudostates for T as well as the sources and

3 In our interpretation, transitions between orthogonal regions lead to leaving (and entry) the
lowest containing composite state. Note that the other interpretation that only the regions of
the lowest containing composite state and not the state itself are left and entered can also be
handled via transformation to core state machines.

UML 2.0 State Machines 257

targets of T with non-interlevel prototype transitions along the transition path of T .
The event, guard, and action of T are written (temporarily till the end of Step 5) at T ’s
target if it is an exit pseudostate4, at T ’s source if it is an entry pseudostate, and at the
outermost transition added for T otherwise. Different transitions labels at an exit (resp.,
entry) pseudostate, which all correspond to a single compound transition (ensured by
Step 1), are transformed into a single label, by taking the union of the events (must be
empty or singleton), the conjunction of the guards, and the actions combined via the
parallel composition of the process algebra. Remove all interlevel transitions and all
join/fork pseudostates. Finally, internal transitions are replaced via transitions having
the corresponding label and having the corresponding state as source and target. After
applying Step 3 on our running example we obtain:

d1,o1,i1�
������ H�������	

���	����• H∗�������	 �
��������

������p
������p

�
������
�

•
�
������
�
������p

�
������

�
������
�
������

�
������n

o2,i2

�
������c�
������ ���	����•
�
������p�
�������
������ �
������n �
������n

�
������n�
������

o3,i3

�����������

d4,o4,i4 �
������p

�
������p�
������ {e1}�
������ �
������p

�
������ �
������
�
������ �
������

�
��������

������p
������p• �
��������

������p
������p

�
������
�
������

�
������ �
������n
�
������n
�
������

�
������n �
������

�

��

e

�� ����

�e ��
���
�� �1��

����

�����
e[g1]α��

������

����
[g3]������

[¬g3]

��

���
��

 ���� ���� !!
α

�2�� ����� ��"""""""
 ####

�����
!!$$ α1�� ����� ""%%%&&α2

��			

����

�������� �������������
e##
!!####���

$$������

e1
������

e1 ��""
��

����
���

�

������� �3
"" ��""

��					
e α

�������

e[g3]α3 ��

Step 4: Default exit and entry are obtained as follows: To every composite or final
state add a non-priority exit pseudostate, called its default exit pseudostate. To every
composite state add for every event e a non-priority exit pseudostate, called its default
exit pseudostate w.r.t. e. Note that default exit pseudostates w.r.t. events are used for
modeling the fact that deferral of events can disable transitions. Furthermore, every pri-
ority exit pseudostate s is considered as an exit pseudostate w.r.t. event e if s belongs
to a compound transition that has trigger e. For every exit pseudostate s that is different
from a completion exit pseudostate and from an exit pseudostate w.r.t. an event and for
every direct subregion r of stateOf(s) such that no transition pointing to s exists in
r, add prototype transitions from the default exit pseudostate of every composite/final
state of r to s. For completion exit pseudostates add transitions in the same way except
that only the default exit pseudostates of final states are used as sources. For an exit
pseudostate w.r.t. e add transitions in the same way except that default exit pseudostates
w.r.t. e are used at composite states (final states use their default exit pseudostate) and
only composite states that do not defer event e are allowed.5 For every entry pseudostate
s and direct subregion r of stateOf(s) such that no transition outgoing s exists in r, add
a default transition from s to the initial pseudostate of r (if present).6 History entry

4 Note that if a compound transition T has an exit (entry) pseudostate as target (resp., source)
then T has exactly one target (resp., source).

5 The transformation follows our decision that a transition t1 has priority over t2 when every
source of t1 is below or equal a source of t2 and (one is strictly below or there is a subregion
for which t2 has a source but not t1).

6 Note that UML 2.0 provides a variation point for default entry if no initial pseudostate exists [8,
p. 532]. The first alternative is an ill-defined behavior, as we interpret it. The second one is not
to activate any state of such regions (using partial configurations). The second interpretation
can be handled by transformation as follows: an initial pseudostate pointing to a new state
having no entry, exit, do actions, and no regions, is added to every region that has no initial
pseudostate.

258 H. Fecher and J. Schönborn

is obtained as follows: The guards of transitions leaving history pseudostates are con-
junctively extended by predicate nab. Add an entry pseudostate to every composite
state for which an upper region has a deep history pseudostate. These newly introduced
entry pseudostates are called the deeper-history entry pseudostates of the correspond-
ing states. Add non-interlevel prototype transitions having guard wla (i) from shallow
history pseudostates to default entry pseudostates, (ii) from deep history pseudostates
to deeper-history entry pseudostate, and (iii) from deeper-history entry pseudostates to
deeper-history entry pseudostates or final states. Finally, transform history and initial
pseudostates into choice pseudostates, except of the initial pseudostate belonging to the
outermost region which becomes an exit pseudostate of the initial state sstart, which
also is added. After applying Step 4 on our running example, we obtain the following
structure: Here, only the relevant exit pseudostates are depicted (e.g., the default exit
points on the outermost states and those pointing to them are omitted) and the default
entry pseudostates on states not containing regions are used there for the deeper-history
entry pseudostates.

d1,o1,i1�
������ �

���	����• � ��
������
������n��

������p
������p

��
������
������n

��
�
������
�
������p

�
������

�
������

�
������

�
������

�
������n

o2,i2

�
������c
�
������

���	����•�
������n

�
������p�
�������
������
�
������

�
������n �
������n

�
������n�
������

o3,i3

�����������

d4,o4,i4 �
������p

�
������p

�
������n�
������ {e1}�
������ ��

������p
������n

�
������ �
������

�
������ �
�������
������n

�
��������

������p
������p� �
��������

������p
������p

�
������
�
������

�
������ �
������n
�
������n
�
������

�
������n �
������

�

[nab]%%'''

e

��
�����

�e ��

&&(
(((

�1

''))))
����

e[g1]α**

��****

((++ [g3]����
[¬g3]

,,

)),
,,

����� ���� ���� !!
α

�2�� ����� ���������

!!###
**.. α1�� ����� ""���&&α2

��			

��

++������ �������������
e##
!!####���

%%----
--

e1
������

e1
,,/

/
!!##

,,/
///

///
/

������� �3
"" ��""

��					
e α

������

e[g3]α3 ��

((++ ��""
��00000

0

--11
111

111 ,,//
/

..2
22
22

//33333

$$����,,//
/

004
44
4

004
44
44
4

$$�����
�����

�����
��

[wla]
�����

[wla]
$$---- [wla]

11

[wla]55

5555
[wla] ����� [wla]

22 [wla]�����
""%%%

%
[wla]

[wla]
����

[wla]
6666

3366

Step 5: In the final step exit and entry actions are transformed: For every composite
state s (different from sstart), we introduce a new composite state s̃ that (i) belongs to
the region to which s belonged, (ii) contains exactly one region that exactly contains s,
(iii) has the do actions of s (the do action of s becomes skip), (iv) has a non-priority exit
pseudostate for every priority or non-priority exit pseudostate of s, and (v) has a com-
pletion exit pseudostate for every completion exit pseudostate of s. Transitions between
the exit (entry) pseudostates of s and their corresponding exit (resp., entry) pseudostates
of s̃ are added. These transitions are labeled with the labels of the corresponding exit
(entry) pseudostates of s, if present, and with no event, with guard true, and with action
skip, otherwise. The exit (resp., entry) actions of s are sequentially attached after (resp.,
before) the action of every outgoing (resp., incoming) transition of exit (resp., entry)
pseudostates of s, which corresponds to the new introduced transitions. This sequen-
tially attaching is done via the sequential process algebra operator. External transitions
targeting entry (outgoing from exit) pseudostates of s are redirected such that they are
targeting (resp., outgoing from) the corresponding entry (resp., exit) pseudostates of s̃.
Finally, all entry/exit actions at a state and all labels written at entry (exit) pseudostates
are removed. After applying Step 5 on our running example we obtain the following
structure: Here, only the relevant composite states are copied and the non relevant entry
points are removed.

d1

�
������

�

���	����• � ��
������
������n��

������p
������p

��
������
������n

��
�
������
�
������p

�
������

�
������

�
������

�
������

�
������n

�
������n

�
������

�
������

�
������

�
������

�
������n

�
������c
�
������

�
������
�
������

�
������n

�
������c
�
������

�
������
�
������

�
������n

���	����•�
������n

�
������p�
������ �
������n

�
������n

�
������n

�
������n

�����������

d4
�
������p

�
������p

�
������n
�
������
�
������ �
������

�
������

�
������
{e1}�
������ ��

������p
������n

�
�������
������n

�
��������

������p
������p� �
��������

������p
������p

�
������

�
������ �
������n
�
������n
�
������

�
������n

�
������

�
������
�
������

�

[nab]
77

4477
e

��
�����

e ��

&&(
(((

�1

''))))
����

e[g1]α
88

55888

((++
[g3]����

[¬g3]

,,

)),
,,

����� ���� ����
�2

��9999
99
����

�����

α1 66::: ��
��000

��

�������� ��������������

e��++���� ���������
%%'''''

e1
�������

e177
��""

88;
;;;

;;

		�����
�3

##����
�������

e α��""""

e[g3]α3 ��

���� ��<< ��""""

,,/
//

// ,,//
/

..2
22
22

//33333

$$����,,//
/

99=
==
==
=

$$�����
�����

�����
����

[wla]
��			

[wla]
::>>
>>

[wla]

11

[wla]??
;;??

[wla]����� [wla]

22
[wla]**@@@@[wla]

""%%%
%

[wla]
����

[wla]
6666

3366
��

��

��00

����

��

��

o2��
i2 ��

i2 ��

i2 ��
o2��

α;o1��

o1 ��
i3;α2 ��

i3 ��

i4����
i4 --

. . .

UML 2.0 State Machines 259

6 Conclusion

To structure the cumbersome process of resolving the ambiguities and removing the
inconsistencies in the semantics of UML state machines (as published by the OMG)
we propose a new strategy: Introduce core state machines with their precise semantics.
These core state machine contain all essential features of UML state machines in a
compact way. Then transform UML state machines to these core state machine. Thereby
we have presented a complete, formal semantics of single UML 2.0 state machines.

Because of the low space complexity of the transformation, core state machines yield
an appropriate basis model for verification of UML 2.0 state machines and probably
also for other statecharts variations: tools can be based on core state machines and,
e.g., UML 2.0 state machines are handled via transformation. Thus more independent
tool support can be developed. In our opinion, core state machines are optimal in the
sense that the syntax of core state machines cannot be further reduced by maintaining
the hierarchical structure and by maintaining the expressive power of UML 2.0 state
machines. Furthermore, core state machines have even more expressive power than
UML state machines, e.g., a more specific history entry can be defined.

Note that do actions can (partly) be executed at any point in time provided that the
corresponding state is active. This big amount of interleaving points leads to a large
state explosion. Here, the core state machines’ explicitly modeled action-interleaving
points (modeled by encoding actions via a state of a labeled transition systems) are also
appropriate for handling the interleaving with the do actions: Modify the semantics such
that do actions may only execute at the interleaving points of the transitions. Further-
more, action-interleaving can also be used to model more atomic executions inside do
actions by slightly modifying the syntax and semantics. Another possible variation in
the semantics of core state machines is to allow in case of history entry that do actions
continue their execution at those positions when the corresponding state was exited.
Note that the behavior of UML 2.0 state machines is not totally clear in this situation.

Future work will be the modeling of communication between state machines, the
development of formal semantics taking further UML diagrams into account, as well as
the development of tool support for core state machines.

References

[1] M. L. Crane and J. Dingel. On the semantics of uml state machines: Categorization and
comparison. Technical Report 501, Queen’s University, 2005.

[2] H. Fecher, M. Kyas, and J. Schönborn. Semantic issues in UML 2.0 state machines. Tech-
nical Report 0507, Christian-Albrechts-Universität zu Kiel, 2005.

[3] H. Fecher, J. Schönborn, M. Kyas, and W. P. de Roever. 29 new unclarities in the semantics
of uml 2.0 state machines. In ICFEM, volume 3785 of LNCS, pages 52–65. Springer, 2005.

[4] Y. Gurevich. Evolving algebras 1993: Lipari guide. In Specification and Validation Meth-
ods, pages 9–36. Oxford University Press, 1995.

[5] D. Harel and A. Naamad. The STATEMATE Semantics of Statecharts. ACM Transactions
on Software Engineering and Methodology, 5(4):293–333, 1996.

[6] D. Harel, A. Pnueli, J. P. Schmidt, and R. Sherman. On the formal semantics of statecharts
(extended abstract). In LICS, pages 54–64. IEEE Computer Society Press, 1987.

260 H. Fecher and J. Schönborn

[7] Y. Jin, R. Esser, and J. W. Janneck. A method for describing the syntax and semantics of
uml statecharts. Software and System Modeling, 3(2):150–163, 2004.

[8] Object Management Group. UML Superstructure Specification, v2.0 formal/05-07-04,
2005.

[9] G. Reggio and R. Wieringa. Thirty one problems in the semantics of uml 1.3 dynamics.
In OOPSLA’99 workshop, Rigorous Modelling and Analysis of the UML: Challenges and
Limitations, 1999.

[10] A. J. H. Simons and I. Graham. 30 things that go wrong in object modelling with uml 1.3.
In Behavioral Specifications of Businesses and Systems, pages 237–257. Kluwer Academic,
1999.

[11] X. Zhan and H. Miao. An approach to formalizing the semantics of uml statecharts. In ER,
volume 3288 of LNCS, pages 753–765. Springer, 2004.

Automated Incremental Synthesis of Timed Automata�

Borzoo Bonakdarpour and Sandeep S. Kulkarni

Department of Computer Science and Engineering,
Michigan State University,

East Lansing, MI 48824, USA
{borzoo, sandeep}@cse.msu.edu

http://www.cse.msu.edu/∼{borzoo,sandeep}

Abstract. In this paper, we concentrate on incremental synthesis of timed au-
tomata for automatic addition of different types of bounded response properties.
Bounded response – that something good will happen soon, in a certain amount
of time – captures a wide range of requirements for specifying real-time and em-
bedded systems. We show that the problem of automatic addition of a bounded
response property to a given timed automaton while maintaining maximal non-
determinism is NP-hard in the size of locations of the input automaton. Further-
more, we show that by relaxing the maximality requirement, we can devise a
sound and complete algorithm that adds a bounded response property to a given
timed automaton, while preserving its existing universally quantified properties
(e.g., MTL). This synthesis method is useful in adding properties that are later
discovered as a crucial part of a system. Moreover, we show that addition of
interval-bounded response, where the good thing should not happen sooner than
a certain amount of time, is also NP-hard in the size of locations even without
maximal nondeterminism. Finally, we show that the problems of adding bounded
and unbounded response properties are both PSPACE-complete in the size of the
input timed automaton.

Keywords: Timed automata, Transformation, Synthesis, Real-time, Bounded
liveness, Bounded response, Formal methods.

1 Introduction

As the traditional approaches to software development turn out to be inefficient in
many cases (e.g., due to maintenance, resolving bugs, etc.), correct-by-construction ap-
proaches to treat software development as a true form of engineering gains more atten-
tion. Automated program synthesis is the problem of designing an algorithmic method
to find a program that satisfies a mathematical model (i.e., a required set of proper-
ties) that is correct-by-construction. The synthesis problem has mainly been studied in
two contexts: synthesizing programs from specification, where the entire specification
is given, and synthesizing programs from existing programs along with a fully or par-
tially available new specification. In approaches where the entire specification must be

� This work was partially sponsored by NSF CAREER CCR-0092724, DARPA Grant
OSURS01-C-1901, ONR Grant N00014-01-1-0744, NSF grant EIA-0130724, and a grant
from Michigan State University.

L. Brim et al. (Eds.): FMICS and PDMC 2006, LNCS 4346, pp. 261–276, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

http://www.cse.msu.edu/~{borzoo, sandeep}

262 B. Bonakdarpour and S.S. Kulkarni

available, changes in specification, e.g., addition of a new property, requires us to be-
gin from scratch. By contrast, in the latter approach, it is possible to reuse an existing
program and, hence, the previous efforts made for synthesizing it. Since it may not be
possible to anticipate all the necessary required properties at design time, this approach
is especially useful in program maintenance, where the program needs to be modified
so that it satisfies a new property of interest.

In order to add a new property to a program there are two ways: (1) comprehen-
sive redesign, where the designer introduces new behaviors (e.g., by introducing new
variables, or adding new computation paths), or (2) local redesign, where the designer
removes behaviors that violate the property of interest, but does not add any new be-
haviors. While the former requires the designer to verify all other properties of the new
program, the latter ensures that certain existing universally quantified properties (e.g.,
LTL and MTL) are preserved.

Depending upon the choice of formulation of the problem and expressiveness of
specifications and programs, the class of complexity of synthesis methods varies from
polynomial time to undecidability. In this paper, we focus on incremental synthesis
methods that add properties typically used for specifying timing constraints. This ap-
proach is opposite to those synthesize arbitrary specifications and, hence, belong to
high classes of complexity. More specifically, we study the problem of incremental ad-
dition of different types of bounded response properties – that something good will
happen soon, in a certain amount of time – to Alur and Dill’s timed automata [1], while
preserving existing Metric Temporal Logic (MTL) specification [2]. A more practical
application of the results presented in this paper is in aspect-oriented programming. In-
deed, our synthesis methods is close in spirit to automated weaving of real-time aspects.

1.1 Related Work

In the context of untimed systems, in the pioneering work [3, 4], the authors propose
methods for synthesizing the synchronization skeleton of programs from their tempo-
ral logic specification. More recently, in [5, 6, 7], the authors investigate algorithmic
methods to locally redesign fault-tolerant programs using their existing fault-intolerant
version and a partially available safety specification. In [8], the authors introduce a
synthesis algorithm that adds UNITY properties [9] such as leads-to (which is an un-
bounded response property) to untimed programs.

Controller synthesis is the problem of finding an automaton (called controller) such
that its parallel composition with a given automaton (called plant) satisfies a set of
properties [10]. Synthesis of real-time systems has mostly been formulated in the con-
text of timed controller synthesis. In the early work [11, 12, 13], the authors investigate
the problem, where the given program is a deterministic timed automaton and the spec-
ification is modeled as a deterministic internal winning condition on the state space of
the plant. The authors also assume that the controller can use unlimited resources (i.e.,
the number of new clocks and guards that compare the clocks to constants). Similarly,
in [14], the authors solve the reachability problem in timed games. Deciding the exis-
tence of a winning condition with the formulation presented in [11,12,13,14] is shown
to be EXPTIME-complete in [15].

Automated Incremental Synthesis of Timed Automata 263

In [16, 17], the authors address the problem of synthesizing timed controllers with
limited resources. Similar to the aforementioned work, the plant is modeled by a deter-
ministic timed automaton, but the specification is given by an external nondeterministic
timed automaton that describes undesired behavior of the plant. With this formulation,
the synthesis problem is 2EXPTIME-complete. However, if the given specification re-
mains nondeterministic, but describes desired behavior of the plant the problem turns
out to be undecidable.

In [18], the authors propose a synthesis method for timed games, where the game is
modelled as a timed automaton, the winning condition is described by TCTL-formulae,
and unlimited resources are available. In [19], the authors consider concurrent two-
person games given by a timed automaton played in real-time and provide symbolic
algorithms for solving them with respect to all ω-regular winning conditions. In both
approaches, deciding the existence of a winning strategy is EXPTIME-complete.

1.2 Contributions

In our work, we consider (i) the case where the entire specification of the program is
not given to the synthesis algorithm; and (ii) nondeterministic timed automata. In fact,
we study how the level of nondeterminism affects the complexity of synthesis methods.
The main results in this paper are as follows:

– We show that adding a bounded response property while maintaining maximal non-
determinism is NP-hard in the size of the locations of the given timed automaton.

– Based on the above result and the NP-hardness of adding two bounded response
properties without maximal nondeterminism 1, we focus on addition of a single
bounded response property to a time automaton without maximal nondeterminism.
In fact, we present a surprising result that by dropping the maximality requirement
we can devise a simple sound and complete transformation algorithm that adds a
bounded response property to a timed automaton while existing MTL properties.
Note that since our algorithm is complete, if it fails to synthesize a solution then
it informs the designer that a more comprehensive (and expensive) approach must
be used. Moreover, since the complexity of our algorithm is comparable with that
of model checking, the algorithm has the potential to provide timely insight to the
designer about how the given program needs to be modified to meet the required
bounded response property. Thus, in this paper, we extend the results presented
in [8] to the context of timed automata.

– We show that adding interval-bounded response, where the good thing should not
happen sooner than a certain amount of time, is also NP-hard in the size locations
of the given timed automaton even without maximal nondeterminism.

– We show that the problems of adding bounded and unbounded response (also called
leads-to) properties are both PSPACE-complete in the size of the input timed au-
tomaton.

1 In [8], it is shown that adding two unbounded response properties to an untimed program
is NP-hard. The same proof can be easily extended to the problem of adding two bounded
response properties to a timed automaton.

264 B. Bonakdarpour and S.S. Kulkarni

Table 1 compares the complexity of our approach and other synthesis methods in the
literature. A natural question is “since direct synthesis of limited MTL to bounded re-
sponse properties is PSPACE-complete, what is the advantage of our method over direct
synthesis?”. There are two advantages:

– Since we incrementally add properties to a given timed automaton while preserving
its existing MTL specification, we do not need to have this specification at hand.
This is particularly useful when the existing specification includes properties whose
automated synthesis is undecidable (e.g., ♦=δq) or lies in classes of complexity
higher than PSPACE.

– The second advantage of our approach is in cases where the given timed automaton
is designed manually for ensuring that it is efficient. Since in our approach, existing
computations are preserved it has the potential to preserve the efficiency of the
given timed automaton.

Table 1. Complexity of different synthesis approaches

Adding Bounded Response Direct Synthesis from MTL Timed Control Synthesis Timed Games

(This paper) [20] [16, 17] [18, 13, 14, 11, 19]

PSPACE-complete EXPSPACE-complete 2EXPTIME-complete EXPTIME-complete

Organization of the paper. In Section 2, we present the preliminary concepts. In
Section 3, we formally state the problem of addition of an MTL property to an exist-
ing timed automaton. We describe the NP-hardness result for adding bounded response
with maximal nondeterminism in Section 4. Then, in Section 5, we present a sound
and complete algorithm for adding bounded response to timed automata without max-
imal nondeterminism. In Section 6, we present the complexity of addition of interval-
bounded response and unbounded response properties. Finally, we make the concluding
remarks and discuss future work in Section 7.

2 Preliminaries

Let AP be a set of atomic propositions. A state is a subset of AP . A timed state se-
quence is an infinite sequence of pairs (σ, τ) = (σ0, τ0), (σ1, τ1)..., where σi (i ∈ N) is
a state and τi ∈ R≥0, and satisfies the following constraints:

1. Initialization: τ0 = 0.
2. Monotonicity: τi ≤ τi+1 for all i ∈ N.
3. Progress: For all t ∈ R≥0, there exists j such that τj ≥ t.

2.1 Metric Temporal Logic

We briefly recap the syntax and semantics of point-based MTL. Linear Temporal Logic
(LTL) specifies the qualitative part of a program. MTL introduces real time by con-
straining temporal operators, so that one can specify the quantitative part as well. For

Automated Incremental Synthesis of Timed Automata 265

instance, the constrained eventually operator ♦[1,3] is interpreted as “eventually within
1 to 3 time units both inclusive”.

Syntax. Formulae of MTL are inductively defined by the grammar: φ ::= p | ¬φ | φ1 ∧
φ2 | φ1UIφ2, where p ∈ AP and I ⊆ R≥0 is an open, closed, half-open, bounded, or
unbounded interval with endpoints in Z≥0. For simplicity, we use ♦Iφ and �Iφ instead
of trueUIφ and ¬♦I¬φ. We also use pseudo-arithmetic expressions to denote intervals.
For instance, “≤ 4” means [0, 4].

Semantics. For an MTL formula φ and a timed state sequence (σ, τ) =
(σ0, τ0), (σ1, τ1)..., the satisfaction relation (σi, τi) |= φ is defined inductively as fol-
lows:

(σi, τi) |= p iff σi |= p (σi |= p iff p ∈ σi and we say σi is a p-state);
(σi, τi) |= ¬φ iff (σi, τi) �|= φ;
(σi, τi) |= φ1 ∧ φ2 iff (σi, τi) |= φ1 ∧ (σi, τi) |= φ2;
(σi, τi) |= φ1UIφ2 iff there exists j > i such that τj − τi ∈ I and (σi′ , τi′) |= φ1
for all i′, where i ≤ i′ < j, and (σj , τj) |= φ2.

A timed state sequence (σ, τ) satisfies the formula φ if (σ0, τ0) |= φ.
The formula φ defines a set L of timed state sequences that satisfy φ. We call this

set a property. A specification Σ is the conjunction of a set of properties. In this paper,
we focus on a standard class of real-time properties defined as follows. An interval-
bounded response property is of the form LI ≡ �(p → ♦[δ1,δ2]q), where p, q ∈ AP
and δ1, δ2 ∈ Z≥0, i.e., it is always the case that a p-state is followed by a q-state within
δ2, but not sooner than δ1 time units. A special case of LI is in which δ1 = 0 known as
bounded response property and is of the form LB ≡ �(p → ♦≤δq), i.e., it is always the
case that a p-state is followed by a q-state within δ time units. An unbounded response
(or leads-to) property is defined as L∞ ≡ �(p → ♦[0,∞)q), i.e, it is always the case
that a p-state is eventually followed by a q-state.

2.2 Timed Automata

A clock constraint over the set X of clock variables is a Boolean combination of for-
mulas of the form x
 c or x − y
 c, where x, y ∈ X , c ∈ Z≥0, and
 is either <
or ≤. We denote the set of all clock constraints over X by Φ(X). A clock valuation is
a function ν : X → R≥0 that assigns a real value to each clock variable. Furthermore,
for τ ∈ R≥0, ν + τ = ν(x) + τ for every clock x. Also, for Y ⊆ X , ν[Y := 0] denotes
the clock valuation for X which assigns 0 to each x ∈ Y and agrees with ν over the rest
of the clock variables in X .

Definition 2.1. A timed automaton A is a tuple 〈L, L0, ψ, X, E〉, where

– L is a finite set of locations,
– L0 ⊆ L is a set of initial locations,
– ψ : L → 2AP is a labeling function assigning to each location the set of atomic

propositions true in that location,

266 B. Bonakdarpour and S.S. Kulkarni

– X is a finite set of clocks, and
– E ⊆ (L × 2X × Φ(X) × L) is a set of switches. A switch 〈s0, λ, ϕ, s1〉 represents

a transition from location s0 to location s1 under clock constraint ϕ over X , such
that it specifies when the switch is enabled. The set λ ⊆ X gives the clocks to be
reset with this switch. �

The semantics of a timed automaton is as follows. A state of a timed automaton is a
pair (s, ν), such that s is a location and ν is a clock valuation for X at location s. The
labeling function for states is defined by ψ′((s, ν)) = ψ(s). Thus, if p ∈ ψ(s), s is a p-
location (i.e., s |= p) and (s, ν) is a p-state for all ν. An initial state of A is (sinit, νinit)
where sinit ∈ L0 and νinit maps the value of all clocks in X to 0. Transitions of A are
of the form (s0, ν0) → (s1, ν1). They are classified into two types:

– Delay: for a state (s, ν) and a time increment τ ∈ R≥0, (s, ν) τ−→ (s, ν + τ).
– Location switch: for a state (s0, ν) and a switch (s0, λ, ϕ, s1) such that ν satisfies

the clock constraint ϕ, (s0, ν) → (s1, ν[λ := 0]).

We use the well-known railroad crossing problem [21] as a running demonstration
throughout the paper. The original problem comprises of three timed automata, but we
only consider the TRAIN automaton (cf. Figure 1-a). The TRAIN automaton models
the behavior of a train approaching a railroad crossing. Initially, the train is far from the
gateway of the crossing. It announces approaching the gateway by resetting the clock
variable x. The train is required to start crossing the gateway after at least 2 minutes. It
passes the gateway at least 3 minutes after approaching the gateway. Finally, there is no
constraint on reaching the initial location.

We now define what it means for a timed automaton A to satisfy an MTL specifi-
cation Σ. An infinite sequence (s0, ν0, τ0), (s1, ν1, τ1)..., where τi ∈ R≥0, is a com-
putation of A iff for all j > 0 (1) (sj−1, νj−1) → (sj , νj) is a transition of A, (2) the
sequence τ0τ1... satisfies initialization, monotonicity, and progress, and (3) τj − τj−1 is
consistent with νj − νj−1. We write A |= Σ and say that timed automaton A satisfies
specification Σ iff every computation of A that starts from an initial state is in Σ. Thus,
A |= (�(p → ♦≤δq)) iff any computation of A that reaches a p-state, reaches a q-state
within δ time units. If A �|= Σ, we say A violates Σ.

2.3 Region Automata

Timed automata can be analyzed with the help of an equivalence relation of finite index
on the set of states [1]. Given a timed automaton A, for each clock x ∈ X , let cx be
the largest constant in the guards of switches of A that involve x, where cx = 0 if x
does not occur in any guard. Two clock valuations ν, μ are clock equivalent if (1) for
all x ∈ X , either �ν(x)� = �μ(x)� or both ν(x), μ(x) > cx, (2) the ordering of the
fractional parts of the clock variables in the set {x ∈ X | ν(x) < cx} is the same in μ,
and (3) for all x ∈ {y ∈ X | ν(y) < cy}, the clock value ν(x) is an integer if and only
if μ(x) is an integer. A clock region ρ is a clock equivalence class. Two states (s0, ν0)
and (s1, ν1) are region equivalent, written (s0, ν0) ≡ (s1, ν1), if (1) s0 = s1 and (2) ν0
and ν1 are clock equivalent. A region is an equivalence class with respect to ≡. Also,
region equivalence is a time-abstract bisimulation [1].

Automated Incremental Synthesis of Timed Automata 267

Using the region equivalence relation, we construct the region automaton of A (de-
noted R(A)) as follows. Vertices of R(A) are regions. Edges of R(A) are of the form
(s0, ρ0) → (s1, ρ1) iff for some clock valuations ν0 ∈ ρ0 and ν1 ∈ ρ1, (s0, ν0) →
(s1, ν1) is a transitions of A. Figure 1-b shows the region automaton of the TRAIN
automaton.

We say a region (s0, ρ0) of region automaton R(A) is a deadlock region iff for all
regions (s1, ρ1), there does not exist an edge of the form (s0, ρ0) → (s1, ρ1). The
definition of a deadlock state is analogous. A clock region β is a time-successor of a
clock region α iff for each ν ∈ α, there exists τ ∈ R>0, such that ν + τ ∈ β, and
ν + τ ′ ∈ α ∪ β for all τ ′ < τ . We call a region (s, ρ) a boundary region, if for each
ν ∈ ρ and for any τ ∈ R>0, ν and ν + τ are not equivalent. A region is open, if it is not
a boundary region. A region (s, ρ) is called end region, if ν(x) > cx for all clocks x.

3 Problem Statement

Given are a timed automaton A〈L, L0, ψ, X, E〉 and an MTL property L (either LI , LB ,
or L∞). Our goal is to find a timed automaton A′〈L′, L′0, ψ′, X ′, E′〉, such that A′ |= L
and for any MTL specification Σ, if A |= Σ then A′ |= Σ.

Since we require that A′ |= Σ, if L′ contains locations that are not in L, then A′

includes computations that are not in Σ and as a result, A′ may violate Σ. Hence, we
require that L′ ⊆ L and L′0 ⊆ L0. Moreover, if E′ contains switches that are present
in E, but are guarded by weaker timing constraints, or E′ contains switches that are not
present in E at all then A′ includes computations that are not in Σ. Hence, we require
that E′ contains a switch 〈s0, λ, ϕ′, s1〉, only if there exists 〈s0, λ, ϕ, s1〉 in E, such that
ϕ′ is stronger than ϕ. Furthermore, extending the state space of A by introducing new
clock variables under the above circumstances is legitimate. Finally, we require ψ′ to
be equivalent to ψ. Thus, the synthesis problem is as follows:

Problem Statement 3.1. Given A〈L, L0, ψ, X, E〉 and an MTL property L, identify
A′〈L′, L′0, ψ′, X ′, E′〉 such that

APPROACHING
x := 0

(x ≥ 2) ?

(x ≥ 3)?

FAR

(a) (b)

CROSSINGPASSED
FAR

x ≥ 0

APPROACHING
0 < x < 1

APPROACHING
2 < x < 3

APPROACHING
1 < x < 2

APPROACHING
x = 3

APPROACHING
x = 1

APPROACHING
x = 2

CROSSING
 x > 3

APPROACHING
 x > 3

CROSSING
x = 2

CROSSING
2 < x < 3

CROSSING
x = 3

PASSED
x =3

PASSED
 x > 3

APPROACHING
x = 0

Fig. 1. (a) TRAIN automaton. (b) Region automaton of TRAIN automaton.

268 B. Bonakdarpour and S.S. Kulkarni

(C1) L′ ⊆ L, L′0 ⊆ L0

(C2) ψ′ = ψ
(C3) X ⊆ X ′

(C4) ∀〈s0, λ, ϕ′, s1〉 ∈ E′ : (∃ 〈s0, λ, ϕ, s1〉 ∈ E : (ϕ′ ⇒ ϕ))
(C5) A′ |= L
(C6) For any MTL specification Σ: ((A |= Σ) ⇒ (A′ |= Σ)) �

Notice that constraint (C6) implicitly implies that the synthesized program is not al-
lowed to have deadlock states. This constraint is known as the non-blocking condition
in the literature of controller synthesis. Furthermore, constraint (C6) is similar to lan-
guage inclusion condition in controller synthesis where the set of uncontrollable tran-
sitions is empty. Note that, based on Problem Statement 3.1, since we allow synthesis
methods to remove states and transitions of a timed automaton, such methods are appro-
priate to preserve universally quantified properties only. In fact, constraints of Problem
Statement 3.1 do not suffice to preserve existential properties of a program (e.g., TCTL).

Soundness and completeness. We say that an algorithm for the synthesis problem is
sound iff its output meets the constraints of the Problem Statement 3.1. We say that an
algorithm for the synthesis problem is complete iff it finds a solution to the Problem
Statement 3.1 iff there exists one.

4 Adding Bounded Response Properties with Maximal
Nondeterminism

In this section, we show that the synthesis problem in Problem Statement 3.1 for adding
a bounded response property while maintaining maximal nondeterminism is NP-hard
in the size of locations of the input timed automaton. We show this result by a reduction
from the Vertex Splitting Problem [22] in directed acyclic graphs (DAG).

Given a timed automaton A and property LB ≡ �(p → ♦≤δq), we say that the
synthesized timed automaton A′ is maximally nondeterministic iff A′ meets all the
constraints of Problem Statement 3.1 and its set of transitions is maximal. Maintain-
ing maximal nondeterminism is desirable in the sense that it increases the potential for
future successful incremental synthesis. Indeed, in our framework, maximal nondeter-
minism is similar to the concept of weakest controller in the literature of controller
synthesis.

The DAG Vertex Splitting Problem (DVSP). Let G〈V, A〉 be a weighted DAG and
vs, vt be arbitrary source and target vertices in G. Let G/Y denote the DAG when each
vertex v ∈ Y is split into vertices vin and vout such that all arcs (v, u) ∈ A, where
u ∈ V , are replaced by arcs of the form (vout, u) and all arcs (w, v) ∈ A, where
w ∈ V , are replaced by arcs of the form (w, vin). In other words, the outgoing arcs of
v now leave vertex vout while the incoming arcs of v now enter vin, and there is no
arc between vin and vout. The DAG vertex splitting problem is to find a vertex set Y ,
where Y ⊆ V and |Y | ≤ i (for some positive integer i), such that the length of the
longest path of G/Y from vs to vt is bounded by a prespecified value d. In [22], the
authors show that DVSP is NP-hard.

Automated Incremental Synthesis of Timed Automata 269

v u
l(a)

voutvinmapping
uoutuin(x = 0)? (x = 0)?

(x = l(a))? , x := 0

2|V|

Fig. 2. Mapping DVSP to MNBRAP

We now show that the problem of adding a bounded response property while main-
taining maximal nondeterminism is NP-hard.

Instance. A timed automaton A〈L, L0, ψ, X, E〉, a bounded response property LB ≡
�(p → ♦≤δq), and a positive integer k, where |E| ≥ k.

Maximally Nondeterministic Bounded Response Addition Problem (MNBRAP).
Does there exist a timed automaton A′〈L′, L′0, ψ′, X ′, E′〉, such that |E′| ≥ k and A′

meets the constraints of the Problem Statement 3.1?

Theorem 4.1. MNBRAP is NP-hard in the size of locations of the input timed
automaton.

Proof. We reduce DVSP to MNBRAP. The reduction maps a weighted DAG G〈V, A〉
and integers d and i to a timed automaton A and integers δ and k, respectively.

Mapping. Let G〈V, A〉 be any instance of DVSP whose longest path is to be bounded
by d. Let l(a) be the length of an arc a ∈ A. We construct a timed automaton A as
follows (cf. Figure 2). Each vertex v ∈ V is mapped to a pair of locations vin and vout

in A. The set of initial locations of A is the singleton L0 = {vin
s }, where vs is the

source vertex in G. Switches of A consist of two types of switches as follows:

– We include switches of the form vin (x=0)?−−−−→ vout for all v in V . The clock con-
straint (x = 0) is used to force computations of A not to wait at location vin.

– We add 2|V | number of parallel switches of the form vout (x=l(a))?, x:=0−−−−−−−−−−→ uin, for
all arcs a = (v, u) ∈ A of length l(a).

Let the set of clock variables of A be the singleton X = {x}. Finally, let vin
s |= p,

vout
t |= q, k = |E| − i, and δ = d. Other locations may satisfy arbitrary atomic propo-

sitions except p and q.

Reduction. We need to show that vertex v ∈ Y in G must be split if and only if the

switch vin (x=0)?−−−−→ vout must be removed from A. We distinguish two cases:

– DVSP −→ MNBRAP: Suppose the answer to DVSP is the set Y , where |Y | ≤ i.
Hence, after splitting all v ∈ Y the length of the longest path of G is at most
d. Now, we show that we can synthesize a timed automaton A′ from the mapped
timed automaton A〈L, {vin

s }, ψ, {x}, E〉 as an answer to MNBRAP. It is easy to

see that if we remove switches of the form vin (x=0)?−−−−→ vout (for all v ∈ Y)

270 B. Bonakdarpour and S.S. Kulkarni

from E to obtain E′, the maximum delay between locations vin
s and vout

t in A′

becomes at most δ. Recall that, δ = d and k = |E| − i. Therefore, A′ |= LB and
|E′| ≥ |E|−i = k. Other constraints of the Problem Statement 3.1 are immediately
met by construction of A′.

– MNBRAP −→ DVSP: Suppose the answer to MNBRAP is A′〈L′, L′0,ψ′,{x}, E′〉,
where |E′| ≥ k and the maximum delay to reach vout

t from vin
s is at most δ.

Note that, L′0 = {vin
s }. Since the number of switches removed from E is at most

|E| − k, k = |E| − i, and i ≤ |V |, we could not have removed switches of the

form vout (x=l(a))?, x:=0−−−−−−−−−−→ uin. This is because there are 2|V | of such switches and,
hence, their removal would not change the maximum delay. Thus, we should have

removed switches of the form vin (x=0)?−−−−→ vout from E to bound the maximum
delay. Indeed, these switches identify the set Y of vertices that should be split in
G, i.e, Y = {v | (v ∈ V) ∧ ((vin, vout) ∈ (E − E′))}. It is easy to see that by
removing the set Y from V the length of the longest path of G becomes at most
d. �

5 Adding Bounded Response Properties Without Maximal
Nondeterminism

In this section, we show that by relaxing the maximality constraint, we can solve the
Problem Statement 3.1 in polynomial time in the size of locations of the input timed
automaton. A possible approach to add a bounded response property to a timed au-
tomaton is as follows. First, we construct an auxiliary timed automaton A2 accepting
all behaviors of the given bounded response property. Then, we construct the product
of A2 and the given timed automaton A1 (denoted A1 ⊗ A2). Although this approach
is semantically correct, it does not meet the constrains of the Problem Statement 3.1. In
particular, construction of the product alone may introduce deadlock states to A1 ⊗A2.
As a result, some of the infinite computations of A1 become finite in A1 ⊗ A2 and,
hence, existing MTL properties are not preserved, which in turn violates the constraint
(C6) of the problem statement. Thus, we need a more “behavior-aware” approach.

Since our synthesis algorithm constructs and manipulates a specific weighted di-
rected graph introduced by Courcoubetis and Yannakakis as a solution to the maximum
delay problem in timed automata [23], we review this problem in Subsection 5.1. In
Subsection 5.2, we describe our synthesis algorithm.

5.1 The Maximum Delay Problem in Timed Automata

The maximum delay problem is as follows. Given a timed automaton A, a source loca-
tion and clock valuation, what is the latest time that a target location can appear along a
computation of A? We first construct the region automaton R(A)〈S, T 〉, where S is the
set of regions and T is the set of edges. Then, we transform the region automaton to an
ordinary weighted directed graph (called MaxDelay digraph). Let the subroutine Con-
structMaxDelayGraph do this transformation as follows. It takes a region automaton
R(A)〈S, T 〉, a set X of source regions, and a set Y of target regions, where X, Y ⊆ S,

Automated Incremental Synthesis of Timed Automata 271

as input, and constructs a MaxDelay digraph G〈V, A〉. Vertices of G consist of the
regions in R(A) with the addition of a source vertex vs and a target vertex vt.

Notation: We denote the weight of an arc (v0, v1) by Weight(v0, v1). Let f denote a
function that maps each region in R(A) to its corresponding vertex in G, i.e., f(r) is a
vertex that represents region r in G. Also, let f−1 denote the inverse of f , i.e., f−1(v)
is the region of R(A) that corresponds to vertex v in G. Likewise, let F be a function
that maps a set of regions in R(A) to the corresponding set of vertices in G and F−1 be
its inverse. Finally, for a boundary region r with respect to clock variable x, we denote
the value of x by r.x (equal to some constant in Z≥0).

Arcs of G consist of the following:

– Arcs of weight 0 from vs to all vertices in F (X), and from all vertices in F (Y) to
vt.

– Arcs of weight 0 from v0 to v1, if f−1(v0) → f−1(v1) is a location switch in
R(A).

– Arcs of weight c′ − c, where c, c′ ∈ Z≥0 and c′ > c, from v0 to v1, if f−1(v0)
and f−1(v1) are both boundary regions with respect to clock variable xi, such that
f−1(v0).xi = c, f−1(v1).xi = c′, and there exists a path in R(A) from f−1(v0)
to f−1(v1), which does not reset xi.

– Arcs of weight c′ − c − ε, where c, c′ ∈ Z≥0, c′ > c, and 0 < ε � 1, from v0 to v1
, if (1) f−1(v0) is a boundary region with respect to clock variable xi, (2) f−1(v1)
is an open region whose time-successor f−1(v2) is a boundary region with respect
to clock variable xi, (3) f−1(v0) → f−1(v1) represents a delay transition in R(A),
and (4) f−1(v0).xi = c and f−1(v2).xi = c′.

– Self-loop arcs of weight ∞ at vertex v, if f−1(v) is an end region.

In order to compute the maximum delay between X and Y , it suffices to find the
longest distance between vs and vt in G.

5.2 The Synthesis Algorithm

In this subsection, we present a sound and complete algorithm,
Add BoundedResponse (cf. Figure 3), for solving the Problem Statement 3.1 with
respect to LB ≡ �(p → ♦≤δq). The core of the algorithm is straightforward. It begins
with an empty digraph and builds up a subgraph of the MaxDelay digraph by adding
paths of length at most δ that start from the set of vertices that represents p-regions in G
to the set of vertices that represents q-regions. Then, it adds the rest of vertices and arcs
while ensuring that no new paths from p-regions to q-regions are introduced. In order
to ensure completeness, the algorithm preserves p-regions.

We now describe the algorithm in detail. First, in order to keep track of time elapsed
since p have become true, we add an extra clock variable t to A as a timer. Moreover,
the maximum value that t would be compared with is δ (lines 1-2). Next, we construct
the region automaton R(A)〈S, T 〉, where S is the set of regions and T is the set of
edges (Line 3). Let the function g : AP → 2S calculate the set of regions with respect
to an arbitrary atomic proposition ap as follows:

g(ap) = {(s1, ρ1) | (s1 |= ap) ∧
(∃ (s0, ρ0) | (((s0, ρ0), (s1, ρ1)) ∈ T) : (s0 �|= ap))}

272 B. Bonakdarpour and S.S. Kulkarni

Add BoundedResponse(A〈L, L0, ψ, X, E〉 : timed automata, LB ≡ �(p → ♦≤δq))
{

X = X ∪ {t}; ct := δ; (1)
∀〈s0, λ, ϕ, s1〉 | (〈s0, λ, ϕ, s1〉 ∈ E ∧ (s0 �|= p ∧ s1 |= p)) : λ := λ ∪ {t}; (2)
R(A)〈S, T 〉 := ConstructRegionAutomaton(A); (3)
Repeat

IsQRemoved := false; (4)
G〈V, A〉 := ConstructMaxDelayGraph(R(A), g(p), g(q)); \\ Defined in Subsection 5.1 (5)
G′〈V ′, A′〉 := ConstructSubgraph(G, δ); (6)

R(A′)〈S′, T ′〉 := {}; (7)
S′ := F −1(V ′); (8)
T ′ := {(r0, r1) | (r0, r1) ∈ T ∧ (f(r0), f(r1)) ∈ A′} ∪

{(r1, r2) | (r1, r2) ∈ T ∧ (f(r1), f(r2)) /∈ A′ ∧
∃r0 : Weight(f(r0), f(r1)) = 1 − ε}; (9)

while (∃r0 | r0 ∈ S′ : (∀r1 | r1 ∈ S′ : (r0, r1) /∈ T ′)) (10)
S′ := S′ − {r0}; T ′ := T ′ − {(r, r0), (r0, r) | r ∈ S′}; (11)
if r0 ∈ g(q) then (12)

IsQRemoved := true; (13)
S := S − {r0}; T := T − {(r, r0), (r0, r) | r ∈ S}; break; (14)

until (IsQRemoved = false);
if {(s, ρ) | (s, ρ) ∈ S′ ∧ s ∈ L0 ∧ (∀x, ν | (ν ∈ ρ ∧ x ∈ X) : ν(x) = 0)} = {} then

declare failure; exit; (15)
A′ := ConstructTimedAutomata(R(A′)); (16)
return A′; (17)

}
ConstructSubgraph(G〈V, A〉 : MaxDelay digraph, δ : integer)
{

G′〈V ′, A′〉 = {}; (18)
for all vertices v such that (vs, v) ∈ A (19)

if the length the shortest path P from v to vt is at most δ then (20)
V ′ := V ′ ∪ {u | u is on P}; (21)
A′ := A′ ∪ {a | a is on P}; (22)

A′ := A′ ∪ {(u, v) | (u, v) ∈ A ∧ (u /∈ V ′ ∨ (u, vt) ∈ A′)}; (23)
V ′ := (V ′ ∪ {u | (∃v : (u, v) ∈ A′ ∨ (v, u) ∈ A′)}) − {vs, vt}; (24)
return G′〈V ′, A′〉; (25)

}

Fig. 3. The synthesis algorithm for adding bounded response

We now reduce our problem to the problem of bounding the length of longest path
in ordinary weighted digraphs. Towards this end, we first generate the MaxDelay di-
graph G〈V, A〉 (Line 5), as described in Subsection 5.1. Then, we invoke (Line 6) the
subroutine ConstructSubgraph (lines 18-25) which takes a MaxDelay digraph G and
an integer δ as input. It generates a subgraph G′ whose longest path from vs to vt is
bounded by δ. Recall that vs and vt are additional source and target vertices connected
to F (g(p)) and F (g(q)), respectively. We now begin with an empty digraph and add
a certain number of paths in polynomial order of |S|. To this end, first, we include the
shortest path from each vertex in F (g(p)) to vt, provided its length is at most δ (lines
19-22). Then, we add the rest of the vertices and arcs to G′ (lines 23-24) while ensuring
that no new paths are added from vs to vt.

After invoking ConstructSubgraph, we transform G′ back to a region automaton
R(A′) (lines 7-9). Next, due to pruning some vertices and arcs in ConstructSubgraph,
we remove deadlock regions from R(A′) (lines 10-11). However, in order to ensure
that this removal does not break the completeness of our algorithm, we should con-
sider the case where a q-region becomes a deadlock region (lines 12-14). In case the
removal of deadlock regions leaves no initial regions, the algorithm declares failure and

Automated Incremental Synthesis of Timed Automata 273

terminates (Lines 15). Otherwise, it constructs the timed automaton A′ out of R(A′)
and terminates successfully (lines 16-17).

Let us now consider the TRAIN automaton presented in Section 2 (cf. Figure 1-
a). Our goal is to bound the delay of revisiting the initial location within at most 4
minutes. To this end, we add the property LB ≡ �(APPROACHING → ♦≤4FAR)
to the TRAIN automaton. Since δ = 4, we have cx = 4 when generating the region
automaton. Next, we construct the MaxDelay digraph. It is easy to observe by adding
12 shortest paths, we includes all computations that satisfy LB . Figure 4-a shows the
synthesized region automaton and Figure 4-b shows the the final timed automaton.

Theorem 5.1. The algorithm Add BoundedResponse is sound and complete. �
Theorem 5.2. The problem of adding a bounded response property to a timed automa-
ton is in PSPACE. �

6 Adding Interval-Bounded and Unbounded Response Properties

We first consider automatic addition of an interval-bounded response property LI ≡
�(p → ♦[δ1,δ2]q) to a timed automaton, where δ1 > 0. As an intuition, let us use the
algorithm Add BoundedResponse to add LI . Since the required response time has a
lower bound, the subroutine ConstructSubgraph has to enumerate and ignore all the
paths whose lengths are less than δ1. Obviously, this enumeration cannot be done in
polynomial time in the size of region automata.

Theorem 6.1. The problem of adding an interval-bounded response property to a timed
automaton is NP-hard in the size of the locations of the input timed automaton.

Proof. The proof is a simple reduction from the longest path problem to an instance
of the problem, where LI ≡ �(p → ♦[δ1,∞)q). Figure 5 illustrates the mapping of a
digraph G to a timed automaton A. It is easy to see that if G has a path of length at least

(x ≤ 4)?

(3 ≤ x ≤ 4)?

(2 ≤ x ≤ 4)?

(a) (b)

FAR
x ≥ 0

APPROACHING
0 < x < 1

APPROACHING

2 < x < 3

APPROACHING
1 < x < 2

APPROACHING
x = 3

APPROACHING

x = 1

APPROACHING

x = 2

CROSSING
3 < x < 4

APPROACHING
x = 4

APPROACHING

3 < x < 4

CROSSING

x = 4

CROSSING
x = 2

CROSSING

2 < x < 3

CROSSING
x = 3

PASSED

x =3

PASSED

3 < x < 4

PASSED
x = 4

APPROACHING
x = 0

APPROACHING
x := 0FAR

CROSSINGPASSED

Fig. 4. (a) Synthesized region automaton (b) Synthesized TRAIN automaton

274 B. Bonakdarpour and S.S. Kulkarni

v u
l(a)

v
(x = l(a))? , x := 0x := 0mapping

u

Fig. 5. Mapping the longest path problem to addition of interval-bounded response

δ1 from a source vertex vs to a target vertex vt then A can be transformed to a timed
automaton A′ whose delay from vs to vt is at least δ1 time units and vice versa. �
Next, we discuss the problem of addition of unbounded response (also called leads-to)
properties.

Theorem 6.2. The problem of addition of an unbounded response property to a timed
automaton is PSPACE-complete in the size of the input timed automaton.

Proof. Since this problem is an instance of adding bounded response, membership
to PSPACE follows from Theorem 5.2 immediately. We now show that the problem is
PSPACE-hard. To this end, we reduce the reachability problem in timed automata [23]
(whether a location s1 is reachable from another location s0) to an instance of our
problem.

Mapping. Let the timed automaton A be any instance of the reachability problem. We
map A to an instance of our problem as follows. Let A∗ be an automaton identical to A
with the following modifications. Let s0 |= p and s1 |= q. Other locations of A∗ may
satisfy arbitrary atomic propositions except p and q. Let s0 be the only initial location
of A∗. We also add a self-loop at s1.

Reduction. If s1 is reachable from s0 in A then there exists a computation in A∗

that starts from s0 and ends at s1. A timed automaton A′ constructed from this com-
putation plus the self-loop at s1 satisfies L∞ and meets the constraints of Problem
Statements 3.1. Now, we show the other direction. Let us assume that the answer to the
decision problem is affirmative and we can synthesize a timed automaton A′ from A∗

such that A′ |= L∞. Then A′ should contain both s0 and s1. This means that s1 is
reachable from s0. Otherwise, A′ would not satisfy L∞. �
Since an unbounded response property is an instance of bounded and interval-bounded
response properties, problems of adding those properties are also PSPACE-hard.

Corollary 6.3. The problem of adding a bounded response property to a timed au-
tomaton is PSPACE-complete in the size of the input timed automaton. �
Remark 6.4. The time complexity of adding an unbounded response property to a
timed automaton with maximal nondeterminism in terms of transitions remains open in
this paper. However, we refer the reader to [8], where the authors introduce a synthe-
sis algorithm for adding leads-to properties to an untimed program, while maintaining
maximal nondeterminism in terms of reachable states of the given program.

We summarize the complexity of problems of addition of different types of response
properties in Table 2.

Automated Incremental Synthesis of Timed Automata 275

Table 2. Complexity of adding response properties in the size of the locations

Bounded Response Unbounded Response Interval-Bounded Response

Maximal NonMaximal Maximal NonMaximal
(Sec. 4) (Sec. 5) (Sec. 6) (Sec. 6) (Sec. 6)

NP-hard P see Rem. 6.4 P NP-hard

7 Conclusion and Future Work

In this paper, we focused on automated incremental synthesis of timed automata by
adding various types of bounded response properties, while preserving its existing Met-
ric Temporal Logic (MTL) specification. Unlike specification-based methods, in our
approach, we start with an existing program rather than specification and, hence, the
previous efforts made for synthesizing the input program are reused.

First, we showed the problem of addition of a bounded response property to a timed au-
tomaton while maintaining maximal nondeterminism is NP-hard in the size of locations
of the input automaton. Then, we presented a simple sound and complete transformation
algorithm that adds a bounded response property to a timed automaton (without maximal
nondeterminism), such that the automaton continues to satisfy its existing MTL speci-
fication. The complexity of the algorithm is polynomial in the size of region automata.
Furthermore, we showed that the problem of addition of interval-bounded response prop-
erties is also NP-hard. Moreover, we showed that adding bounded and unbounded re-
sponse properties are PSPACE-complete in the size of the input timed automaton.

Detailed region automata are not an efficient finite representation of timed automata
in terms of space complexity. On other hand, zone automata [24] are more efficient fi-
nite representation of timed automata used in model checking techniques. Since our
goal was to evaluate complexity classes for adding bounded response, we focused
on region automata. However, an interesting improvement step is modifying
Add BoundedResponse, so that it manipulates a zone automaton rather than a de-
tailed region automaton.

In many hard real-time systems (e.g., mission-critical systems) meeting deadlines
in the presence of faults is a necessity. As future work, we plan to study the problem
of automatic addition of fault-tolerance to existing fault-intolerant real-time systems.
More specifically, we plan to extend the theory of automated addition of fault-tolerance
to untimed programs [5,6,7] to the context of real-time programs. In particular, we plan
to study how time-bounded recovery can be achieved in the presence of faults using the
results presented in this paper.

References

1. R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science, 126(2):
183–235, 1994.

2. R. Alur and T.A. Henzinger. Real-Time Logics: Complexity and Expressiveness. Information
and Computation, 10(1):35–77, May 1993.

276 B. Bonakdarpour and S.S. Kulkarni

3. E.A. Emerson and E.M. Clarke. Using branching time temporal logic to synthesize synchro-
nization skeletons. Science of Computer Programming, 2(3):241–266, 1982.

4. Z. Manna and P. Wolper. Synthesis of communicating processes from temporal logic speci-
fications. ACM Transactions on Programming Languages and Systems, 6(1):68–93, 1984.

5. S. S. Kulkarni and A. Arora. Automating the addition of fault-tolerance. In Formal Tech-
niques in Real-Time and Fault-Tolerant Systems (FTRTFT), pages 82–93, 2000.

6. S. S. Kulkarni, A. Arora, and A. Chippada. Polynomial time synthesis of Byzantine agree-
ment. In 20th Symposium on Reliable Distributed Systems (SRDS), pages 130–140, 2001.

7. S. S. Kulkarni and A. Ebnenasir. Automated synthesis of multitolerance. In International
Conference on Dependable Systems and Networks (DSN), pages 209–219, 2004.

8. A. Ebnenasir, S. S. Kulkarni, and B. Bonakdarpour. Revising UNITY programs: Possibil-
ities and limitations. In 9th International Conference on Principles of Distributed Systems
(OPODIS), 2005.

9. K. M. Chandy and J. Misra. Parallel Program Design: A Foundation. Addison-Wesley, 1988.
10. W. M. Wonham P. J. G. Ramadge. The control of discrete event systems. Proceedings of the

IEEE, 77(1):81–98, January 1989.
11. H. Wong-Toi and G. Hoffmann. The control of dense real-time discrete event systems. In

30th International Conference on Decision and Control, pages 1527–1528, 1991.
12. O. Maler, A. Pnueli, and J. Sifakis. On the synthesis of discrete controllers for timed systems.

In 12th Annual Symposium on Theoretical Aspects of Computer Science (STACS), pages 229–
242, 1995.

13. E. Asarin, O. Maler, A. Pnueli, and J. Sifakis. Controller synthesis for timed automata. In
IFAC Symposium on System Structure and Control, pages 469–474, 1998.

14. E. Asarin and O. Maler. As soon as possible: Time optimal control for timed automata. In
Hybrid Systems: Computation and Control (HSCC), pages 19–30, 1999.

15. T. A. Henzinger and P. W. Kopke. Discrete-time control for rectangular hybrid automata.
Theoretical Computer Science, 221(1-2):369–392, 1999.

16. D. D’Souza and P. Madhusudan. Timed control synthesis for external specifications. In 19th
Annual Symposium on Theoretical Aspects of Computer Science (STACS), pages 571–582,
2002.

17. P. Bouyer, D. D’Souza, P. Madhusudan, and A. Petit. Timed control with partial observability.
In Computer Aided Verification (CAV), pages 180–192, 2003.

18. M. Faella, S. LaTorre, and A. Murano. Dense real-time games. In Logic in Computer Science
(LICS), pages 167–176, 2002.

19. L. de Alfaro, M. Faella, T. A. Henzinger, R. Majumdar, and M. Stoelinga. The element of
surprise in timed games. In International Conference on Concurrency Theory (CONCUR),
2003.

20. R. Alur, T. Feder, and T.A. Henzinger. The benefits of relaxing punctuality. Journal of the
ACM, 43(1):116–146, 1996.

21. N. G. Leveson and J. L. Stolzy. Analyzing safety and fault tolerance using time petri nets. In
International Joint Conference on Theory and Practice of Software Development (TAPSOFT)
on Formal Methods and Software, pages 339–355, 1985.

22. D. Paik, S.M. Reddy, and S. Sahni. Deleting vertices to bound path length. IEEE Transation
on Computers, 43(9):1091–1096, 1994.

23. C. Courcoubetis and M. Yannakakis. Minimum and maximum delay problems in real-time
systems. In Computer-Aided Verificaion (CAV), pages 399–409, 1991.

24. R. Alur, C. Courcoubetis, N. Halbwachs, D. L. Dill, and H. Wong-Toi. Minimization of
timed transition systems. In International Conference on Concurrency Theory (CONCUR),
pages 340–354, 1992.

SAT-Based Verification of LTL Formulas

Wenhui Zhang�

Laboratory of Computer Science
Institute of Software, Chinese Academy of Sciences, Beijing, China

zwh@ios.ac.cn

Abstract. Bounded model checking (BMC) based on satisfiability test-
ing (SAT) has been introduced as a complementary technique to BDD-
based symbolic model checking of LTL properties in recent years and a
lot of successful work has been done with this approach. The basic idea
is to search for a counter example of a particular length and to generate
a propositional formula that is satisfied iff such a counter example exists.
An over approximation of the length that need to be checked in order to
certify that the system is error free is usually too big, such that it is not
practical to use this approach for checking systems that are error free
with respect to given properties. Even if we know the exact threshold,
for a reasonably large system, this threshold would possibly also be large
enough to make the verification become intractable due to the complexity
of solving the corresponding SAT instance. This study is on a different
direction and the aim of this study is verification of valid properties.
We propose an approach to (partly) avoid the use of the completeness
threshold as the verification criteria when checking systems that are er-
ror free with respect to LTL properties. The benefit of the use of this
approach may be very large compared to the use of the completeness
threshold. Though, Prasad, Biere and Gupta pointed out in a survey
paper [19] that, currently, the strength of SAT-based verification tech-
niques lies primarily in falsification, this study explores the strength of
SAT-based techniques for verification and the case study shows that this
is a promising approach.

1 Introduction

Model checking has been successfully used in the last decade for the formal
verification of finite state systems. It is considered as one of the most practi-
cal applications of theoretical computer science in the verification of concurrent
systems. However the practical applicability of model checking is limited by the
state explosion problem which could be caused by for instance, the representa-
tion of currency of operations by their interleaving. Therefore much effort has
been put into the research aiming at minimizing models. The methods include
application of cone of influence reduction [1], semantic minimization [20], state
� Supported by the National Natural Science Foundation of China under Grant No.

60373050, 60421001 and 60573012, and the National Grand Fundamental Research
973 Program of China under Grant No. 2002cb312200.

L. Brim et al. (Eds.): FMICS and PDMC 2006, LNCS 4346, pp. 277–292, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

278 W. Zhang

information compression [11], abstraction techniques [6,14], partial order reduc-
tions [22,23], symmetry reductions [10], compositional techniques for splitting
verification tasks [8,1], case-based partition techniques [15,24], and BDD based
symbolic techniques for compactly representing transition relations and system
states [5,4].

Bounded model checking (BMC) based on satisfiability testing (SAT) has
been introduced as a complementary technique to BDD-based symbolic model
checking of LTL properties [3]. A lot of successful work has been done with this
approach [2,19]. The basic idea is to search for a counter example of a particular
length and to generate a propositional formula that is satisfied iff such a counter
example exists. The efficiency of this method is based on the observation that
if a system is faulty then only a fragment of its state space is sufficient for
finding an error. Given a finite transition system M , an LTL formula ϕ and a
natural number k, a BMC procedure decides whether there exists a computation
in M of length k or less that violates ϕ. SAT based BMC is performed by
generating a propositional formula which is satisfiable if and only if such a path
exists. BMC is conducted in an iterative process where k is incremented until
either (i) an error is found, (ii) the problem becomes intractable due to the
complexity of solving the corresponding SAT instance, or (iii) k reaches some
pre-computed completeness threshold which indicates that M satisfies ϕ. If we
have given M and ϕ such that M satisfies ϕ, then the practical value of this
approach depends on the existence of a relatively small value of the completeness
threshold. Computing an exact value of the completeness threshold for a given
model and formula is difficult. A general over approximation of the completeness
threshold is |M | ·2|ϕ| where |M | is the size of the model and |ϕ| is the size of the
formula. This approximation is obviously impractical for checking systems that
are error free with respect to given properties. For reducing this approximation,
completeness threshold has been studied for several types of LTL formulas [13,7].

As stated in [13], knowing the completeness threshold is essential for making
BMC complete. Without it, there is no way of knowing whether the property
holds or rather the bound is not sufficiently high. Even if we know the complete-
ness threshold, for a reasonably large system, this threshold would possibly be
large enough to make the verification become intractable due to the complexity
of solving the corresponding SAT instance. This study is on a different direc-
tion that proposes an approach that (partly) avoids this problem and may prove
whether the property holds without knowing a completeness threshold. This kind
of research has also been considered in [2] for simple liveness properties of the
form Fp. There is also a lot of work on proving safety properties based on SAT,
the related works are for instance, proving safety properties by using induction
[21,16], conservative abstraction with counter example guided refinement [9], and
interpolation based transition relation approximation for generating facts rele-
vant with respect to given properties [12]. In this work, we study LTL properties
in general.

SAT-Based Verification of LTL Formulas 279

2 Propositional Linear Temporal Logic

Propositional linear temporal logic (LTL) is a logic introduced by Pnueli as a
specification language for concurrent programs [18]. Let AP be a set of proposi-
tion symbols. The set of LTL formulas is defined as follows:

– Every member of AP is an LTL formula.
– Logical connectives of LTL include: ¬, ∧, ∨, and →.

If ϕ and ψ are LTL formulas, then so are ¬ϕ, ϕ ∧ ψ, ϕ ∨ ψ, and ϕ → ψ.
– Temporal operators include: X , F , G, U , and R.

If ϕ and ψ are LTL formulas, then so are: X ϕ, F ϕ, G ϕ, ϕ U ψ, and ϕ R ψ.

2.1 Semantics of LTL

The formal semantics of LTL is defined with respect to paths of a Kripke struc-
ture. Let M = 〈S, T, I, L〉 be a Kripke structure where S is a set of states,
T ⊆ S × S is a transition relation which is total, I ⊆ S is a set of initial states
and L : S → 2AP is a labeling function. Let ϕ be a temporal formula. Let
π = π0π1 · · · be a path of M and πi be the subpath of π starting at πi. We
define the relation ϕ holds on π, denoted π |= ϕ, as follows.

π |= p iff p ∈ L(π0)
π |= ¬ϕ iff π 	|= ϕ
π |= ϕ ∧ ψ iff π |= ϕ and π |= ψ
π |= ϕ ∨ ψ iff π |= ϕ or π |= ψ
π |= ϕ → ψ iff π |= ϕ implies π |= ψ
π |= Xϕ iff π1 |= ϕ
π |= Fϕ iff ∃k ≥ 0.πk |= ϕ
π |= Gϕ iff ∀k ≥ 0.πk |= ϕ
π |= ϕUψ iff ∃k ≥ 0.∀j < k.(πk |= ψ ∧ πj |= ϕ)
π |= ϕRψ iff ∀j ≥ 0.(πj |= ψ)∨ ∃k ≥ 0.((πk |= ϕ) ∧ (∀j ≤ k.(πj |= ψ))

For simplicity, we call a Kripke structure a model. An LTL formula ϕ is true
in the model M , denoted M |= ϕ, iff ϕ is true on all paths starting from an
arbitrary initial state of M .

2.2 Bounded Semantics of LTL Formulas in NNF

An LTL formula is in negation normal form (NNF), if the symbol → does not ap-
pear in the formula and ¬ is applied only to proposition symbols. Every formula
can be transformed into a formula in NNF by using the following rules:

ϕ → ψ = ¬ϕ ∨ ψ
¬(ϕ ∨ ψ) = (¬ϕ ∧ ¬ψ)
¬Fϕ = G¬ϕ
¬(ϕUψ) = ¬ϕR¬ψ

¬(ϕ ∧ ψ) = (¬ϕ ∨ ¬ψ)
¬Xϕ = X¬ϕ
¬Gϕ = F¬ϕ
¬(ϕRψ) = ¬ϕU¬ψ

In the following, we only consider LTL formulas in NNF. Let M = 〈S, T, I, L〉
be a model and k ∈ N. Let π = π0π1 · · · be an infinite path of M . If u = π0 · · · πk

280 W. Zhang

and v = πl · · · πk for some 0 ≤ l ≤ k, we call π = u · vω a (k, l)-loop. If π is a
(k, l)-loop for some 0 ≤ l ≤ k, we call π a k-loop.

Definition 1 (Bounded Semantics for a Loop). Let k ≥ 0 and π be a k-
loop. Then an LTL formula ϕ is valid on π with bound k, written π |=k ϕ, iff
π |= ϕ.

Definition 2 (Bounded Semantics without a Loop). Let k ≥ 0 and π be
a path which is not a k-loop. Then an LTL formula ϕ is valid on π with bound
k, written π |=k ϕ, iff π |=0

k ϕ where:

π |=i
k p iff p ∈ L(πi)

π |=i
k ¬p iff π 	|=i

k p
π |=i

k ϕ ∧ ψ iff π |=i
k ϕ and π |=i

k ψ
π |=i

k ϕ ∨ ψ iff π |=i
k ϕ or π |=i

k ψ

π |=i
k Xϕ iff i < k and π |=i+1

k ϕ

π |=i
k Fϕ iff ∃j ∈ {i, ..., k}.π |=j

k ϕ
π |=i

k Gϕ iff false.
π |=i

k ϕUψ iff ∃j ∈ {i, ..., k}.∀n ∈ {i, ..., j − 1}.(π |=j
k ψ ∧ π |=n

k ϕ)
π |=i

k ϕRψ iff ∃j ∈ {i, ..., k}.((π |=j
k ϕ) ∧ ∀n ∈ {i, ..., j}.(π |=n

k ψ))

Note that π |=i
k Gϕ is false by definition. This is explained by that a global

property can only be witnessed by an infinite path (or a path with a loop).

Theorem 1. Let M be a model, ϕ an LTL formula. Then M 	|= ϕ iff there is a
path π and a k ≥ 0 such that π |=k ¬ϕ.

3 Encoding the Model in SAT-Formulas

Since we have Fϕ = true Uϕ and ϕRψ = (ψU(ϕ ∧ ψ)) ∨ Gψ, we only consider
formulas of the form ϕ ∨ ψ, ϕ ∧ ψ, Xϕ, Gϕ, ϕUψ constructed from propositions
and the negation of propositions.

Given a model M , an LTL formula ϕ and a bound k, we will construct encod-
ings for the pair (M, ϕ). Let u0, ..., uk be a finite sequence of states on a path
π. We first define [[M]]k to be a formula representing that u0 · · · uk is a finite
prefix of a valid path of M .

Definition 3 (Transition Relation). Let M = 〈S, T, I, L〉 be a model and
k ≥ 0.

[[M]]k := I(u0) ∧
k−1∧
i=0

T (ui, ui+1)

This translation of transition relation corresponds to that in [3]. Let M =
〈S, T, I, L〉 be a model. Let u, w (possibly with subscripts) represent individual
states. Let p ∈ AP be a proposition symbol and p(u) represent the propositional

SAT-Based Verification of LTL Formulas 281

formula representing the states in which p is true according to L. For a state
and a formula, we first present the encoding for (formula,state) pair as done in
[3] (however with a slightly different version). Then we propose an encoding for
(formula,state) pair for the purpose of verification.

3.1 Encoding of LTL Formulas

Let min() be the minimum operation and s(i, k, l) denote

if (k = i) then l else i + 1.

Definition 4 (Translation of LTL formulas). Given a state u ∈ {u0, ..., uk}
and a formula ϕ, the encoding is denoted by [[ϕ, u]]k,l.

[[p, u]]k,l = p(u)
[[¬p, u]]k,l = ¬p(u)
[[ϕ ∨ ψ, u]]k,l = [[ϕ, u]]k,l ∨ [[ψ, u]]k,l

[[ϕ ∧ ψ, u]]k,l = [[ϕ, u]]k,l ∧ [[ψ, u]]k,l

[[Xϕ, ui]]k,l = [[ϕ, us(i,k,l)]]k,l

[[Gϕ, ui]]k,l =
∧k

j=min(i,l)[[ϕ, uj]]k,l

[[ϕUψ, ui]]k,l =
∨k

j=i([[ψ, uj]]k,l ∧
∧j−1

t=i [[ϕ, ut]]k,l)∨∧k
t=i[[ϕ, ut]]k,l ∧

∨i−1
j=l ([[ψ, uj]]k,l ∧

∧j−1
t=l [[ϕ, ut]]k,l)

where [[ϕ, u−1]]k,l = false.

In the above definition, u−1 is a special symbol used only for the purpose of uni-
form formula representation (avoiding specification of different cases explicitly).
In the real transformation, formulas containing this symbol are to be replaced
by true or false according to their meaning, for instance, [[p ∨ q, u−1]]k,l must
be replaced by false and not by [[p, u−1]]k,l ∨ [[q, u−1]]k,l. In addition, we define
T (uk, u−1) = true. The subscript (k, l) in the definition indicates that the path
is a (k, l)-loop for l ≥ 0, otherwise the path is considered loop free.

Definition 5. [[M, ϕ]]k := [[M]]k ∧
∨k

l=−1(T (uk, ul) ∧ [[ϕ, u0]]k,l).

The encoding of [[M, ϕ]]k corresponds to that in [3] with some modification,
i.e. a condition

∧k
l=0 ¬T (uk, ul) representing loop-free-ness is removed (or more

precisely, replaced by true)1. This change does not affect the satisfiability of the
formula. This fact is to be established and presented as Theorem 2.

Lemma 1. [[ϕ, u0]]k,−1 → [[ϕ, u0]]k,l for l ∈ {0, ..., k}.

1 This is not only a matter of representational simplicity. With this clause in the
formulation, we would not be able to prove Lemma 3 and then the proof of Theorem
5 would be different and more complicated.

282 W. Zhang

Proof: We prove a more general property

[[ϕ, ui]]k,−1 → [[ϕ, ui]]k,l for i ∈ {0, ..., k} and l ∈ {0, ..., k}

by structural induction. The case is trivial for ϕ being a proposition or negation
of a proposition. Assume the induction hypothesis.

– The case is trivial for ϕ being a conjunctive or disjunctive formula.
– If ϕ = Xϕ0, then

[[ϕ, ui]]k,−1 is either false (i = k) or the same as [[ϕ0, ui+1]]k,−1 (i < k).
In the latter case, [[ϕ, ui]]k,l = [[ϕ0, ui+1]]k,l.
Therefore, according to the induction hypothesis, [[ϕ, ui]]k,−1 → [[ϕ, ui]]k,l.

– If ϕ = Gϕ0, then [[ϕ, ui]]k,−1 is false . Therefore [[ϕ, ui]]k,−1 → [[ϕ, ui]]k,l.
– If ϕ = ϕ0Uϕ1, then

∨i−1
j=−1([[ϕ1, uj]]k,−1 ∧

∧j−1
t=−1[[ϕ0, ut]]k,−1) = false .

Therefore [[ϕ, ui]]k,−1 =
∨k

j=i([[ϕ1, uj]]k,−1 ∧
∧j−1

t=i [[ϕ0, ut]]k,−1).
Then, according to the induction hypothesis,
[[ϕ, ui]]k,−1 →

∨k
j=i([[ϕ1, uj]]k,l ∧

∧j−1
t=i [[ϕ0, ut]]k,l).

Since the right side of the implication is a disjunctive part of [[ϕ, ui]]k,l, we
obtain [[ϕ, ui]]k,−1 → [[ϕ, ui]]k,l. ��

Theorem 2. Let M be a model, ϕ be an LTL formula. Let k ≥ 0. There is a
path π of M such that π |=k ϕ iff [[M, ϕ]]k is satisfiable.

Theorem 2 corresponds to the normal soundness theorem of bounded LTL model
checking [3]. As explained, the only different in the encoding [[M, ϕ]]k and that
in [3] is that a condition representing loop-free-ness is removed. The fact that
this change does not affect the satisfiability of the formula can be proved easily
based on Lemma 1.

3.2 Encoding of LTL Formulas for Verification

Definition 6 (Translation of LTL formulas for Verification). Given a
state u ∈ {u0, ..., uk} and a formula ϕ, the encoding is denoted by [[ϕ, u]]vk.

[[p, u]]vk = p(u)
[[¬p, u]]vk = ¬p(u)
[[ϕ ∨ ψ, u]]vk = [[ϕ, u]]vk ∨ [[ψ, u]]vk
[[ϕ ∧ ψ, u]]vk = [[ϕ, u]]vk ∧ [[ψ, u]]vk
[[Xϕ, ui]]vk = [[ϕ, ui+1]]vk
[[Gϕ, ui]]vk =

∧k
j=i[[ϕ, uj]]vk

[[ϕUψ, ui]]vk =
∨k

j=i([[ψ, uj]]vk ∧
∧j−1

t=i [[ϕ, ut]]vk) ∨
∧k

t=i[[ϕ, ut]]vk

where [[ϕ, uk+1]]vk = true.

Definition 7. [[M, ϕ]]vk := [[M]]k ∧ [[ϕ, u0]]vk.

In the following, we shall establish that there is no path π and k ≥ 0 such that
π |=k ϕ if there is some i such that [[M, ϕ]]vi is unsatisfiable.

SAT-Based Verification of LTL Formulas 283

Definition 8. [[M, ϕ, ui]]vk := [[M]]k ∧ [[ϕ, ui]]vk.

Proposition 1. For all i ∈ {0, ..., k}, the following equivalences holds:

(1) [[M, ϕ0 ∨ ϕ1, ui]]vk = [[M, ϕ0, ui]]vk ∨ [[M, ϕ1, ui]]vk
(2) [[M, ϕ0 ∧ ϕ1, ui]]vk = [[M, ϕ0, ui]]vk ∧ [[M, ϕ1, ui]]vk
(3) [[M, Xϕ, ui]]vk = [[M, ϕ, ui+1]]vk
(4) [[M, Gϕ, ui]]vk =

∧k
j=i[[M, ϕ, uj]]vk

(5) [[M, ϕUψ, ui]]vk =
∨k

j=i([[M, ψ, uj]]vk∧
∧j−1

t=i[[M,ϕ, ut]]vk) ∨
∧k

t=i[[M, ϕ, ut]]vk

Proof: We only prove the first equivalence. The others are similar. We have

[[M, ϕ0 ∨ ϕ1, ui]]vk
= [[M]]k ∧ [[ϕ0 ∨ ϕ1, ui]]vk
= [[M]]k ∧ ([[ϕ0, ui]]vk ∨ [[ϕ1, ui]]vk)
= [[M, ϕ0, ui]]vk ∨ [[M, ϕ1, ui]]vk

This was what needed to be proved.

Lemma 2. [[M, ϕ, ui]]vk+1 → [[M, ϕ, ui]]vk for i ∈ {0, ..., k}.

Proof: This can be proved based on structural induction on ϕ. The proof is
straightforward and is omitted.

Theorem 3. [[M, ϕ]]vk+1 → [[M, ϕ]]vk.

Proof: This follows directly from Lemma 2.

Theorem 4. [[M, ϕ]]k → [[M, ϕ]]vk.

Proof: Since [[M, ϕ]]k = [[M]]k ∧
∨k

l=−1(T (uk, ul) ∧ [[ϕ, u0]]k,l) and [[M, ϕ]]vk =
[[M]]k ∧ [[ϕ, u0]]vk, it is sufficient to prove that [[ϕ, u0]]k,l → [[ϕ, u0]]vk. We prove

[[ϕ, ui]]k,l → [[ϕ, ui]]vk for i ∈ {0, ..., k} and l ∈ {0, ..., k}

by structural induction. The case is trivial for ϕ being a proposition or negation
of a proposition. Assume the induction hypothesis.

– The case is trivial for ϕ being a conjunctive or disjunctive formula.
– If ϕ = Xϕ0, we have two cases.

For i = k, we have [[ϕ, ui]]vk = true. Therefore [[ϕ, ui]]k,l → [[ϕ, ui]]vk.
For i < k, we have [[ϕ, ui]]k,l = [[ϕ0, ui+1]]k,l and [[ϕ, ui]]vk = [[ϕ0, ui+1]]vk.
Therefore, according to the induction hypothesis, [[ϕ, ui]]k,l → [[ϕ, ui]]vk.

– If ϕ = Gϕ0, then
[[ϕ, ui]]k,l =

∧k
j=i[[ϕ0, uj]]k,l ∧

∧i−1
j=min(i,l)[[ϕ0, uj]]k,l

[[ϕ, ui]]vk =
∧k

j=i[[ϕ0, uj]]vk.
Therefore, according to the induction hypothesis, [[ϕ, ui]]k,l → [[ϕ, ui]]vk.

284 W. Zhang

– If ϕ = ϕ0Uϕ1, then
[[ϕ0Uϕ1, ui]]k,l

=
∨k

j=i([[ϕ1, uj]]k,l ∧
∧j−1

t=i [[ϕ0, ut]]k,l)∨∧k
t=i[[ϕ0, ut]]k,l ∧

∨i−1
j=l ([[ϕ1, uj]]mk,l ∧

∧j−1
t=l [[ϕ0, ut]]k,l)

[[ϕ0Uϕ1, ui]]vk =
∨k

j=i([[ϕ1, uj]]vk ∧
∧j−1

t=i [[ϕ0, ut]]vk) ∨
∧k

t=i[[ϕ0, ut]]vk.
Therefore, according to the induction hypothesis, [[ϕ, ui]]k,l → [[ϕ, ui]]vk.

Lemma 3. If [[M]]k ∧ [[ϕ, u0]]k,−1 is satisfiable, then [[M]]k+1 ∧ [[ϕ, u0]]k+1,−1
is satisfiable.

Proof: Let u0, ..., uk be a set of states (each represented by a set of literals) that
satisfy [[M]]k ∧ [[ϕ, u0]]k,−1. Since the transition relation in M is total, there
is a state uk+1 such that T (uk, uk+1). We prove that u0, ..., uk, uk+1 is a set
of states that satisfies [[M]]k+1 ∧ [[ϕ, u0]]k+1,−1. Since [[M]]k ∧ [[ϕ, u0]]k,−1 and
T (uk, uk+1), then [[M]]k+1 = [[M]]k ∧ T (uk, uk+1) is true. Then it is sufficient
to prove that

[[ϕ, ui]]k,−1 → [[ϕ, ui]]k+1,−1 for all i ∈ {0, ..., k}.

This can then be proved based on structural induction. The proof is omitted.

Lemma 4. Let l be non-negative. If [[M]]k ∧T (uk, ul)∧ [[ϕ, u0]]k,l is satisfiable,
then [[M]]k+1 ∧ T (uk+1, ul+1) ∧ [[ϕ, u0]]k+1,l+1 is satisfiable.

Proof: Let u0, ..., uk be a set of states that satisfy [[M]]k ∧T (uk, ul)∧ [[ϕ, u0]]k,l.
Let uk+1 = ul. We prove that u0, ..., uk, uk+1 is a set of states that satisfies
[[M]]k+1 ∧ T (uk+1, ul+1) ∧ [[ϕ, u0]]k+1,l+1. We have

[[M]]k+1 ∧ T (uk+1, ul+1)
= [[M]]k ∧ T (uk, uk+1) ∧ T (uk+1, ul+1)
= [[M]]k ∧ T (uk, ul) ∧ T (ul, ul+1)
= [[M]]k ∧ T (uk, ul)

Since [[M]]k ∧T (uk, ul)∧ [[ϕ, u0]]k,l, then [[M]]k+1 ∧T (uk+1, ul+1) is true. Then
it is sufficient to prove that

[[ϕ, ui]]k,l → [[ϕ, ui]]k+1,l+1 for all i ∈ {0, ..., k}.

This can then be proved based on structural induction. The proof is omitted.

Theorem 5. If [[M, ϕ]]k is satisfiable, then [[M, ϕ]]k+1 is satisfiable.

Proof: Suppose that [[M, ϕ]]k = [[M]]k ∧
∨k

l=−1(T (uk, ul) ∧ [[ϕ, u0]]k,l) is true.
Then [[M]]k ∧ (T (uk, ul) ∧ [[ϕ, u0]]k,l) is true for some l ∈ {−1, 0, ..., k}. There
are two cases l = −1 and l ∈ {0, ..., k}. In the former case, Lemma 3 implies that
[[M]]k+1 ∧ (T (uk+1, u−1) ∧ [[ϕ, u0]]k+1,−1) is satisfiable. Therefore [[M, ϕ]]k+1 is
satisfiable. In the latter case, Lemma 4 implies that [[M]]k+1 ∧ (T (uk+1, ul+1) ∧
[[ϕ, u0]]k+1,l+1) is satisfiable. Therefore [[M, ϕ]]k+1 is satisfiable also in this case.

Theorem 6. If [[M, ϕ]]vk is unsatisfiable for some k, then M |= ¬ϕ.

SAT-Based Verification of LTL Formulas 285

Proof: Suppose that M |= ¬ϕ does not hold. Then there is a path π of M and a
k′ ≥ 0 such that π |=k′ ϕ according to Theorem 1. Then [[M, ϕ]]k′ is satisfiable
according to Theorem 2. Then [[M, ϕ]]n is satisfiable for n ≥ k′ according to
Theorem 5. Then [[M, ϕ]]vn is satisfiable for n ≥ k′ according to Theorem 4.
Choose n′ such that n′ ≥ k and n′ ≥ k′. Then [[M, ϕ]]vn′ is satisfiable. Then
[[M, ϕ]]vk′′ is satisfiable for all n′ ≥ k′′ according to Theorem 3. This contradicts
with that [[M, ϕ]]vk is unsatisfiable, since n′ ≥ k. This proves the theorem.

4 SAT-Based Verification

Theorem 6 provides a theoretical basis for verification and Theorem 2 provides
a theoretical basis for error detection. The theorems suggest the following com-
bination of verification and error detection approach. Let M be a model and ϕ
be a temporal formula to be verified.

– Start with k = 0;
– If [[M, ¬ϕ]]vk is unsatisfiable, report that M |= ϕ is valid;
– If [[M, ¬ϕ]]k is satisfiable, report that M |= ϕ does not hold;
– If a completeness threshold is reached, report that M |= ϕ is valid;
– Increase k and repeat the process.

Note that ¬ϕ represents the formula in NNF corresponding to ¬ϕ. In many
cases, as will be demonstrated in the case study, the procedure may terminate
before reaching a completeness threshold. However, in the general case, it may
be necessary to repeat the process until a completeness threshold is reached. For
instance, if we have the trivial property ϕ = Gtrue, which is true for all systems,
then we have [[M, ¬ϕ]]k = false and [[M, ¬ϕ]]vk = I(u0)∧

∧k−1
i=0 T (ui, ui+1). Then

the first one is unsatisfiable and the second is always satisfiable. The above
approach can only terminate when a completeness threshold is reached.

This is a theoretical formulation. In practice, for a reasonably large system,
the threshold would possibly be large enough to make the verification become
intractable due to the complexity of solving the corresponding SAT instance,
and the process will be interrupted by time or memory constraints.

In the rest of this section, we discuss some types of simple properties which
can then be a background for the case-study of the use of this approach for
verification in the next section.

A Safety Property: A simple safety property is of the forms pRq where p and q
are propositions. For verifying this property, we need to calculate [[M, ¬pU¬q]]vk.
This formula expands to

I(u0) ∧
∧k−1

i=0 T (ui, ui+1) ∧ (
∨k

j=0(¬q(uj) ∧
∧j−1

t=0 ¬p(ut)) ∨
∧k

t=0 ¬p(ut))

Therefore M |= pRq if there is a k such that

I(u0) ∧
k−1∧
i=0

T (ui, ui+1) ∧ (
k∨

j=0

(¬q(uj) ∧
j−1∧
t=0

¬p(ut)) ∨
k∧

t=0

¬p(ut))

is unsatisfiable.

286 W. Zhang

A Co-Safety Property: A simple co-safety property is of the form pUq where
p and q are propositions. For verifying this property, we need to calculate
[[M, ¬pR¬q]]vk. This formula is equivalent to [[M, (¬qU(¬q∧¬p))∨G¬q]]vk which
expands to

I(u0)∧
∧k−1

i=0 T (ui, ui+1) ∧
∨k

j=0(¬q(uj) ∧ ¬p(uj)∧
∧j−1

t=0 ¬q(ut)) ∨
∧k

t=0¬q(ut))

Therefore M |= pUq if there is a k such that

I(u0) ∧
k−1∧
i=0

T (ui, ui+1) ∧ (
k∨

j=0

(¬p(uj) ∧
j∧

t=0

¬q(ut)) ∨
k∧

t=0

¬q(ut))

is unsatisfiable. Furthermore, we have the following lemma.

Lemma 5. if M |= pUq, then there is a k such that

I(u0) ∧
k−1∧
i=0

T (ui, ui+1) ∧ (
k∨

j=0

(¬p(uj) ∧
j∧

t=0

¬q(ut)) ∨
k∧

t=0

¬q(ut))

is unsatisfiable.

Proof: We prove that if

I(u0) ∧
k−1∧
i=0

T (ui, ui+1) ∧ (
k∨

j=0

(¬p(uj) ∧
j∧

t=0

¬q(ut)) ∨
k∧

t=0

¬q(ut))

is satisfiable for all k, then M 	|= pUq, i.e. [[M, ¬pR¬q]]k′ is satisfiable for some
k′. We have

[[M, ¬pR¬q]]k
= [[M, (¬qU(¬q ∧ ¬p)) ∨ G¬q]]k
= I(u0) ∧

∧k−1
i=0 T (ui, ui+1)∧∨k

l=−1(T (uk, ul) ∧ [[(¬qU(¬q ∧ ¬p) ∨ G¬q), u0]]k,l)
= I(u0) ∧

∧k−1
i=0 T (ui, ui+1)∧

([[(¬qU(¬q ∧ ¬p) ∨ G¬q), u0]]k,−1∨∨k
l=0(T (uk, ul) ∧ [[(¬qU(¬q ∧ ¬p) ∨ G¬q), u0]]k,l))

= I(u0) ∧
∧k−1

i=0 T (ui, ui+1)∧
(
∨k

j=0(¬q(uj) ∧ ¬p(uj) ∧
∧j−1

t=0 ¬q(ut))∨∨k
l=0(T (uk, ul) ∧ (

∨k
j=0(¬q(uj) ∧ ¬p(uj) ∧

∧j−1
t=0 ¬q(ut)) ∨

∧k
j=0 ¬q(uj)))

= I(u0) ∧
∧k−1

i=0 T (ui, ui+1)∧
(
∨k

j=0(¬p(uj) ∧
∧j

t=0 ¬q(ut)) ∨
∨k

l=0(T (uk, ul) ∧
∧k

j=0 ¬q(uj)))

The difference between [[M, ¬pR¬q]]vk and [[M, ¬pR¬q]]k is T (uk, ul) for some
k ≥ l ≥ 0. Since the transition relation is total, there is some k and l such that
T (uk, ul) is true. This proves the lemma. ��

SAT-Based Verification of LTL Formulas 287

Corollary 1. M |= pUq iff there is a k such that

I(u0) ∧
k−1∧
i=0

T (ui, ui+1) ∧ (
k∨

j=0

(¬p(uj) ∧
j∧

t=0

¬q(ut)) ∨
k∧

t=0

¬q(ut))

is unsatisfiable.

Proof: This follows from the Lemma 5 and Theorem 5.

A Liveness Property: Naturally, Fp is a special case of qUp. By simplifying the
previously obtained equation, we have

[[M, G¬p]]vk = I(u0) ∧
∧k−1

i=0 T (ui, ui+1) ∧
∧k

i=0 ¬p(ui)

Then according to Corollary 1, M |= Fp iff there is a k such that

I(u0) ∧
k−1∧
i=0

T (ui, ui+1) ∧
k∧

i=0

¬p(ui)

is unsatisfiable. Note that this is consistent with the liveness property of the
form Fp considered in [2] where the translation of M |= Fp is as follows:

[[M, Fp]]k = I(u0) ∧
k−1∧
i=0

T (ui, ui+1) →
k∨

i=0

p(ui)

Then M |= Fp iff there is a k such that [[M, Fp]]k is valid.

5 A Case Study

We consider verification of properties of the form pUq and pRq of a mutual
exclusion algorithm. We first present our tool for verification, and then the ex-
perimental results.

5.1 Verification Tool: VERBS

We have developed a tool called VERBS (VERification Based on Sat) based on
our satisfiability checking tool BOSCH (BOolean Satisfiability CHecker)2. The
input to the tool is as follows:

– a file containing the specification of state variables;
– a file containing the specification of initial states in CNF format;
– a file containing the specification of the transition relation in CNF format;
– a file containing the specification of the property;
– a number k representing the length of transition (k = 0, 1, 2, ...).

Currently the subset of LTL formulas handled by the tool is of the forms ϕUψ
and ϕRψ, where ϕ, ψ are propositional formulas in DNF format. The tool first
converts all these information to a CNF formula and then calls BOSCH for
satisfiability checking.
2 A tool based on DPLL and similar principles as the tool for parallel execution of

stochastic search procedures on reduced SAT instances [25].

288 W. Zhang

5.2 Presentation of the Case

Let a, b be variables of enumeration type which have respectively the domain
{s0, ..., s3} and {t0, ..., t3}. Let x, y, t be variables of boolean type. Let the system
consist of two processes: A and B with the following specification in a first order
transition system [17]:

Process A:

a = s0 −→ (y, t, a) := (1, 1, s1)
a = s1 ∧ (x = 0 ∨ t = 0) −→ (a) := (s2)
a = s2 −→ (y, a) := (0, s3)
a = s3 −→ (y, t, a) := (1, 1, s1)

Process B:

b = t0 −→ (x, t, b) := (1, 0, t1)
b = t1 ∧ (y = 0 ∨ t = 1) −→ (b) := (t2)
b = t2 −→ (x, b) := (0, t3)
b = t3 −→ (x, t, b) := (1, 0, t1)

Let the initial state be a = s0 ∧ b = t0 ∧ x = y = t = 0. We consider two
properties:

1. One of the processes reached the critical region (a = s2 ∨ b = t2) releases
the property that the system is either at the initial state (a = s0 ∧ b = t0)
or some is waiting to enter the critical region (x = 1 ∨ y = 1);

2. The value of y and t is consistent (y = t) unless both processes have tried
to get into the critical region (a ≥ s1 ∧ b ≥ t1) and this continues until some
process exited the critical region (a = s3 ∨ b = t3).

Let boolean variables a0 and a1 represent the variable a such that a0 = i∧a1 = j
meaning a = s2i+j , and b0 and b1 represent b such that b0 = i ∧ b1 = j meaning
b = t2i+j . Then each state is represented by a tuple (a0, a1, b0, b1, x, y, t). Let
V = {a0, a1, b0, b1, p, q, r}. The system can be represented by boolean formulas
as follows:

I(a0, a1, b0, b1, x, y, t) ≡
x = 0 ∧ y = 0 ∧ t = 0 ∧ a0 = 0 ∧ a1 = 0 ∧ b0 = 0 ∧ b1 = 0

T (a0, a1, b0, b1, x, y, t, a′
0, a

′
1, b

′
0, b

′
1, x

′, y′, t′) ≡
a0 = 0 ∧ a1 = 0 ∧ y′ = 1 ∧ t′ = 1 ∧ a′

1 = 1 ∧ same(V \ {y, t, a1})∨
a0 = 0∧ a1 = 1 ∧ (x = 0 ∨ t = 0) ∧ a′

0 = 1 ∧a′
1 = 0 ∧ same(V \{a0, a1})∨

a0 = 1 ∧ a1 = 0 ∧ y′ = 0 ∧ a′
1 = 1 ∧ same(V \ {y, a1})∨

a0 = 1 ∧ a1 = 1 ∧ y′ = 1 ∧ t′ = 1 ∧ a′
0 = 0 ∧ same(V \ {y, t, a0})

b0 = 0 ∧ b1 = 0 ∧ x′ = 1 ∧ t′ = 0 ∧ b′1 = 1 ∧ same(V \ {x, t, b1})∨
b0 = 0 ∧ b1 = 1 ∧ (y = 0 ∨ t = 1) ∧ b′0 = 1 ∧ b′1 = 0 ∧ same(V \ {b0, b1})∨
b0 = 1 ∧ b1 = 0 ∧ x′ = 0 ∧ b′1 = 1 ∧ same(V \ {x, b1})∨
b0 = 1 ∧ b1 = 1 ∧ x′ = 1 ∧ t′ = 0 ∧ b′0 = 0 ∧ same(V \ {x, t, b0})

SAT-Based Verification of LTL Formulas 289

where same(S) represents v′1 = v1 ∧ · · · ∧ v′n = vn for the set of propositions
S = {v1, ..., vn}. Let

p1 ≡ (a0 = 1 ∧ a1 = 0 ∨ b0 = 1 ∧ b1 = 0)
q1 ≡ (a0 = 0 ∧ a1 = 0 ∧ b0 = 0 ∧ b1 = 0) ∨ (x = 1 ∨ y = 1)
p2 ≡ (a1 = 1 ∨ a0 = 1) ∧ (b1 = 1 ∨ b0 = 1) ∨ (y = 0 ∧ t = 0 ∨ y = 1 ∧ t = 1)
q2 ≡ (a0 = 1 ∧ a1 = 1 ∨ b0 = 1 ∧ b1 = 1)

We check the two properties: M |= p1Rq1 and M |= p2Uq2.

Property 1: For M |= p1Rq1, we check the satisfiability of [[M, ¬(p1Rq1)]]k
and [[M, ¬(p1Rq1)]]vk for k = 0, 1, 2, ..., until the first formula is satisfiable, the
second formulas is unsatisfiable, or the completeness threshold is reached. Here,
we only consider the use of [[M, ¬(p1Rq1)]]vk to the verification of the property
(since verification is the main concern of this paper). Let Vi = {ui,0, ..., ui,6} and
same(S) represent ui+1,j = ui,j for each ui,j ∈ S. We have

[[M, ¬(p1Rq1)]]vk = I(u0) ∧
k−1∧
i=0

T (ui, ui+1) ∧ [[¬(p1Rq1), u0]]vk

where

I(u0) ≡ ¬u04 ∧ ¬u05 ∧ ¬u06 ∧ ¬u00 ∧ ¬u01 ∧ ¬u02 ∧ ¬u03

T (ui, ui+1) ≡
¬ui,0 ∧ ¬ui,1 ∧ ui+1,5 ∧ ui+1,6 ∧ ui+1,1 ∧ same(Vi \ {ui,5, ui,6, ui,1})∨
¬ui,0 ∧ ui,1 ∧ (¬ui,4 ∨ ¬ui,6) ∧ ui+1,0 ∧ ¬ui+1,1 ∧ same(Vi \ {ui,0, ui,1})∨
ui,0 ∧ ¬ui,1 ∧ ¬ui+1,5 ∧ ui+1,1 ∧ same(Vi \ {ui,5, ui,1})∨
ui,0 ∧ ui,1 ∧ ui+1,5 ∧ ui+1,6 ∧ ¬ui+1,0 ∧ same(Vi \ {ui,5, ui,6, ui,0})∨
¬ui,2 ∧ ¬ui,3 ∧ ui+1,4 ∧ ¬ui+1,6 ∧ ui+1,3 ∧ same(Vi \ {ui,4, ui,6, ui,3})∨
¬ui,2 ∧ ui,3 ∧ (¬ui,5 ∨ ui,6) ∧ ui+1,2 ∧ ¬ui+1,3 ∧ same(Vi \ {ui,2, ui,3})∨
ui,2 ∧ ¬ui,3 ∧ ¬ui+1,4 ∧ ui+1,3 ∧ same(Vi \ {ui,4, ui,3})∨
ui,2 ∧ ui,3 ∧ ui+1,4 ∧ ¬ui+1,6 ∧ ¬ui+1,2 ∧ same(Vi \ {ui,4, ui,6, ui,2})

[[¬(p1Rq1), u0]]vk ≡∨k
j=0((uj,0 ∨ uj,1 ∨ uj,2 ∨ uj,3) ∧ ¬uj,4 ∧ ¬uj,5∧∧j−1
t=0 ((¬ut,0 ∨ ut,1) ∧ (¬ut,2 ∨ ut,3))) ∨

∧k
t=0((¬ut,0∨ ut,1)∧ (¬ut,2∨ ut,3))

Let us use ϕ(k) to denote the conjunction of the above formulas. By feeding
files with formulas representing the initial states, the transition relation and the
property in required format into VERBS, we obtain that ϕ(0), ϕ(1) and ϕ(2)
are satisfiable, while ϕ(3) is unsatisfiable and this proves M |= p1Rq1.

The result of running VERBS provides information to be interpreted as a
path, if the result is satisfiable. For instance, for k = 2 and ϕ(2) satisfiable, we
can extract the following path from the information:

a0 = 0, a1 = 0, b0 = 0, b1 = 0, x = 0, y = 0, t = 0
a0 = 0, a1 = 1, b0 = 0, b1 = 0, x = 0, y = 1, t = 1
a0 = 0, a1 = 1, b0 = 0, b1 = 1, x = 1, y = 1, t = 0

290 W. Zhang

This path information could sometimes be useful for error location, if the prop-
erty is not valid. For instance, if we check M |= Gp2 with k = 4, we obtain a
path with a loop as follows.

a0 = 0, a1 = 0, b0 = 0, b1 = 0, x = 0, y = 0, t = 0
a0 = 0, a1 = 1, b0 = 0, b1 = 0, x = 0, y = 1, t = 1
a0 = 1, a1 = 0, b0 = 0, b1 = 0, x = 0, y = 1, t = 1
a0 = 1, a1 = 1, b0 = 0, b1 = 0, x = 0, y = 0, t = 1
a0 = 0, a1 = 1, b0 = 0, b1 = 0, x = 0, y = 1, t = 1

This is a path with a loop that starts from the second state and has length 3.
With this path information, we know that the 4-th state of this path violates
p2. Therefore Gp2 does not hold in M . Then we may conclude that either Gp2
is not a necessary requirement of such a model or the model should be modified
in order to avoid such a path.

Property 2: For M |= p2Uq2, we check the satisfiability of [[M, ¬(p2Uq2)]]k and
[[M, ¬(p2Uq2)]]vk for k = 0, 1, 2, ..., until the first formula is satisfiable, the second
formulas is unsatisfiable, or the completeness threshold is reached. We have

[[M, ¬(p2Uq2)]]vk = I(u0) ∧
k−1∧
i=0

T (ui, ui+1) ∧ [[¬(p2Uq2), u0]]vk

where I(u0) and T (ui, ui+1) are the same as that already specified previously,
and [[¬(p2Uq2), u0]]vk is as follows:
∨k

j=0((¬uj,0 ∧ ¬uj,1 ∨ ¬uj,2 ∧ ¬uj,3) ∧ (¬uj,5 ∧ ¬uj,6) ∧ (uj,5 ∧ uj,6)∧∧j
t=0((¬ut,0 ∨ ¬ut,1) ∧ (¬ut,2 ∨ ¬ut,3))) ∨

∧k
t=0((¬ut,0 ∨ ¬ut,1)∧ (¬ut,2∨¬ut,3))

Let ψ(k) denote the conjunction of this formula and I(u0) ∧
∧k−1

i=0 T (ui, ui+1).
We obtain that ψ(0), ψ(1), ψ(2), ψ(3) are satisfiable, while ψ(4) is unsatisfiable
and this proves M |= p2Uq2.

Table 1. Experimental Data

Property k Variables Clauses SAT
ϕ(k) 0 7+2 13 yes

1 14+11 127 yes
2 21+20 243 yes
3 28+29 361 no

Property k Variables Clauses SAT
ψ(k) 0 7+2 18 yes

1 14+11 137 yes
2 21+20 258 yes
3 28+29 381 yes
4 35+38 506 no

Summary: Table 1 is a summary of the experimental data on a Sun Blade 1000
with 750 MHz and 512 MB. The number of variables is divided into two parts:
the number of variables representing the states and that of auxiliary variables
used in the transformation of the formula into CNF. The time used by BOSCH
for satisfiability checking is negligible.

SAT-Based Verification of LTL Formulas 291

6 Concluding Remarks

We have presented encodings of pairs of model and formula in SAT for the
purpose of both verification of valid properties and error detection, in which the
encoding with the emphasis on error detection is basically the same as that in
[3], and proposed an approach to verify M |= ϕ in the following way.

– Start with k = 0;
– If [[M, ¬ϕ]]vk is unsatisfiable, report that M |= ϕ is valid;
– If [[M, ¬ϕ]]k is satisfiable, report that M |= ϕ does not hold;
– If a completeness threshold is reached, report that M |= ϕ is valid;
– Increase k and repeat the process.

The case-study presented in the previous section shows that this approach is
useful for checking formulas that are valid in a model (though, there are also
weaknesses of the approach, cf. the discussion in Section 4), in the sense that
the iteration stopped before a completeness threshold is reached. Although the
system presented is simple with the completeness threshold bounded by a rel-
atively small number, it is easy to construct systems by extending the model,
such that the completeness threshold is larger than any given number, while
the verification can still stop when k reaches respectively 3 and 4 for the given
properties. Therefore the benefit of the use of this approach could be arbitrary
large compared to the use of the completeness threshold, and this extends the
practical capability of SAT based model checking to the verification of valid
properties.

In a survey paper [19], Prasad, Biere and Gupta pointed out that, currently,
the strength of SAT-based verification techniques lies primarily in falsification.
This is a remark on verification related to general temporal properties. For simple
properties, there has been a lot of work and report of success, for instance, for
proving simple safety and liveness properties [21,16,12,2]. This study explores
the strength of SAT-based techniques for verification of general LTL properties
and the case study shows that this is a promising approach for certain types of
applications as demonstrated in the case study.

Acknowledgments. The author thanks anonymous referees for their construc-
tive critics and comments that helped improving this paper.

References

1. S. Berezin and S. Campos and E. M. Clarke. Compositional Reasoning in Model
Checking. Proceedings of COMPOS’97. Lecture Notes in Computer Science 1536:
81-102. 1998.

2. A. Biere, A. Cimmatti, E. Clarke, O. Strichman, and Y. Zhu. Bounded Model
Checking. Advances in Computers 58, Academic Press, 2003.

3. A. Biere, A. Cimmatti, E. Clarke, and Y. Zhu. Symbolic Model Checking without
BDDs. LNCS 1579:193-207. TACAS 99.

292 W. Zhang

4. J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and J. Hwang. Symbolic
model checking: 1020 states and beyond. IEEE Symposium on Logic in Computer
Science 5: 428-439, 1990.

5. R. Bryant. Graph based algorithms for boolean function manipulation. IEEE
Transaction on Computers 35(8):677-691. 1986.

6. E. M. Clarke, O. Grumberg and D. E. Long. Model Checking and Abstraction.
ACM Transactions on Programming Languages and Systems 16(5): 1512-1542,
1994.

7. E. M. Clarke, D. Kroening, J. Ouaknine, and O. Strichman. Completeness and
Complexity of Bounded Model Checking. VMCAI 2004: 85-96.

8. E. M. Clarke, D. E. Long and K. L. McMillan. Compositional Model Checking.
IEEE Symposium on Logic in Computer Science 4: 353-362, 1989.

9. Satyaki Das and David L. Dill. Successive Approximation of Abstract Transition
Relations. LICS 2001: 51-60.

10. E. Allen Emerson and A. P. Sistla. Symmetry and model checking. Formal Methods
in System Design 9:105-131. 1995.

11. J. Gregoire. Verification Model Reduction through Abstraction. Formal Design
Techniques VII, 280-282, 1995.

12. Ranjit Jhala and Kenneth L. McMillan. Interpolation and SAT-based Model
Checking. CAV 2003: 1-13.

13. D. Kroening, O. Strichman. Efficient Computation of Recurrence Diameters. VM-
CAI 2003: 298-309.

14. C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani and S. Bensalem. Property preserving
abstractions for the verification of concurrent systems. Journal of Formal methods
in System Design 6:1-35. 1995.

15. K. L. McMillan. Verification of Infinite State Systems by Compositional Model
Checking. Lecture Notes in Computer Science 1703:219-234. CHARME 1999.

16. Leonardo de Moura, Harald Ruess, Maria Sorea. Bounded Model Checking and
Induction: From Refutation to Verification. CAV 2003: 14-26.

17. Doron A. Peled. Software Reliability Methods. Springer-Verlag. 2001.
18. A. Pnueli. A temporal logic of concurrent programs. Theoretical Computer Science

13:45-60. 1981.
19. Mukul R. Prasad, Armin Biere, Aarti Gupta. A survey of recent advances in SAT-

based formal verification. STTT 7(2): 156-173 (2005).
20. V. Roy and R. de Simone. Auto/Autograph. In Computer Aided Verification. DI-

MACS series in Discrete Mathematics and Theoretical Computer Science 3: 235-
250, June 1990.

21. Mary Sheeran, Satnam Singh and Gunnar St̊almarck. Checking Safety Properties
Using Induction and a SAT-Solver. FMCAD 2000: 108-125.

22. A. Valmaru. Stubborn sets for reduced state space generation. LNCS
483(ICATPN’89):491-515. 1989.

23. P. Wolper and P. Godefroid. Partial-order methods for temporal verification. LNCS
715(CONCUR’93):233-246. 1993.

24. W. Zhang. Combining Static Analysis and Case-based Search Space Partitioning
for Reducing Peak Memory in Model Checking. Journal of Computer Science and
Technology 18(6):762-770, 2003.

25. W. Zhang, Z. Huang, and J. Zhang. Parallel Execution of Stochastic Search Proce-
dures on Reduced SAT Instances. Lecture Notes in Computer Science 2417:108-117.
Springer-Verlag. 2002.

jmle: A Tool for Executing JML Specifications
Via Constraint Programming

Ben Krause and Tim Wahls

Department of Mathematics and Computer Science
Dickinson College

P.O. Box 1773
Carlisle, PA 17013, USA

{krauseb, wahlst}@dickinson.edu

Abstract. Formal specifications are more useful and easier to develop
if they are executable. In this work, we describe a system for executing
specifications written in the Java Modeling Language (JML) by translat-
ing them to constraint programs, which are then executed via the Java
Constraint Kit (JCK). Our system can execute specifications written at
a high level of abstraction, and the generated constraint programs are
Java implementations of the translated specifications. Hence, they can
be called directly from ordinary Java code.

1 Introduction

The ability to execute a formal specification while it is being developed greatly
eases the development process. Running a specification allows the developer to
validate that the meaning of the specification is what was intended, providing
strong intuition that the specification is correct and complete. As formal specifi-
cations are intrinsically abstract, this ability to get “hands on” experience with a
specification makes developing and understanding the specification much easier.
Additionally, executable formal specifications can serve as prototypes of the final
implementation, and test oracles for back-to-back testing of that implementa-
tion. These benefits are accessible to nontechnical users, as they do not require
reading mathematical notation, understanding proofs of system properties, and
so on. Given these benefits, it is not surprising that a large number of techniques
for implementing specifications have been developed [1,2,3,4,5].

In this work, we describe the jmle tool, which is used to execute specifica-
tions written in the Java Modeling Language (JML) [6]. JML is a behavioral
interface specification language for Java - class definitions and method proto-
types are written using Java syntax, and a JML class specification can only be
correctly implemented by a Java class definition. JML is also a model-based
specification language - the language provides a rich set of mathematical types
(sets, sequences, bags, functions, relations, . . .), which are implemented as Java
classes. Each method is specified with first order pre- and postconditions writ-
ten over these types, as well as the built-in types of Java. An example of a JML
specification is presented in Section 3.

L. Brim et al. (Eds.): FMICS and PDMC 2006, LNCS 4346, pp. 293–296, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

294 B. Krause and T. Wahls

jmle executes JML specifications by translating them to constraint programs.
It is important that executability does not compromise the abstraction and free-
dom from implementation bias that makes JML specifications useful, and using
constraint programming techniques allows specifications written at a relatively
high level of abstraction to be executed. The resulting constraint programs are
executed using the Java Constraint Kit (JCK) [7], a system for creating Java
implementations of constraint solvers. All parts of our system are implemented
in Java, so users do not need to install any additional programming environ-
ments, and our system is completely compatible with existing tools for JML (as
described in [6]). The programs that we generate are Java implementations of
the corresponding specifications, and so can be called directly from Java code.

2 Implementation of jmle

We have adapted jmlc (the JML tool that generates runtime assertion check-
ing code) [8] to automatically compile JML specifications to JCK programs as
follows:

– a JML class specification is compiled to a Java class
– the model (specification only) fields become actual fields of this class
– each JML method specification is compiled to a method implementation.

The body of each translated method creates goal constraints corresponding
to the original JML specification. When the method is called, these constraints
become the initial constraint store, which is then simplified using special-purpose
JCK solvers. The solvers can execute a large subset of JML, including \old ex-
pressions (which allow pre-state values to be used in postconditions), universally
and existentially quantified assertions where the domain of the quantified vari-
able can be determined and is finite, and nondeterministic specifications (which
are executed via backtracking). The system will report an error at compile time
for specifications that use features outside of this subset. Additionally, jmle will
fail to execute specifications that use only these features if they do not provide
sufficient information to allow the system to construct post-state values, or to
simplify all of the constraints in the store. In these situations, jmle will throw
an exception to indicate that it could not execute the specification.

We considered each of the Java primitive types and the JML classes imple-
menting the JMLCollection interface (that is, the classes representing mathe-
matical sets, sequences, bags, functions and relations) as constraint domains, and
defined constraints corresponding to each operation on each of these types. We
then implemented solvers for each of these domains using JCK rewriting rules.
Targeting our solvers specifically for Java and JML types allowed us to compen-
sate somewhat for the performance disadvantages of a Java implementation (as
compared to the solvers found in full constraint programming languages).

jmle: A Tool for Executing JML Specifications Via Constraint Programming 295

3 Example

The following JML specification of class IntList demonstrates the kind of
implicit and abstract specifications that jmle can execute. Instances of class
IntList contain a list of integers, modeled as a JMLObjectSequence holding
java.lang.Integer objects. JMLObjectSequence is a JMLCollection class that
implements sequences in which elements are compared using == (rather than the
equals method). The constructor and other natural methods of the class have
been omitted in the interest of space.

//@ model import org.jmlspecs.models.JMLObjectSequence;

public class IntList {
//@ public model JMLObjectSequence theList;

/*@ assignable theList;
ensures theList.int_size() == \old(theList.int_size()) &&
(\forall Integer i; \old(theList.has(i));

theList.count(i) == \old(theList.count(i))) &&
(\forall int j; 0 <= j && j < \old(theList.int_size()) - 1;

((Integer) theList.itemAt(j)).intValue() <=
((Integer) theList.itemAt(j + 1)).intValue()); */

public void sort();
}

The postcondition for the sort method asserts that the pre- and post-state
values of the model field theList are of the same size, and then uses a universal
quantifier to state that the post-state value of theList contains the same number
of occurrences of each element as occurs in the pre-state value. Together, these
assertions ensure that the post-state value is a permutation of the pre-state value.
The final universally quantified assertion forces the post-state value to be sorted.
When this specification is executed, the count constraints on the post-state value
are used to search partial permutations of the pre-state value (backtracking as
soon as an unsorted prefix is discovered) until a sorted permutation is found. As
the running time is exponential in the length of the sequence, only small inputs
(up to about 5 elements) can be used for validating this specification.

jmle first compiles this specification to a JCK program, and then to ordinary
Java bytecode that uses JCK library code. Hence, the compiled specification ap-
pears to client code exactly as any Java implementation of the JML specification
would (except that it is much larger and slower than a hand-coded implementa-
tion). The specification can then be executed using ordinary Java “driver” code
that creates an instance of the class and calls its methods, by writing JUnit tests
for the class specification, or in any other manner that a hand-coded implemen-
tation could be used. This client code can then be re-used without modification
when testing other implementations of the specification.

296 B. Krause and T. Wahls

4 Conclusion

jmle is related to several other systems that translate specifications to constraint
programs (such as [1,5]), and particularly the jml-tt tool [3], which animates JML
specifications. One practical difference is that these other systems do not trans-
late specifications to implementations that can be called directly from client
code. Rather, specifications are animated using an external interface. Addition-
ally, jml-tt does not provide constraint support for executing specifications that
use the JMLCollection classes.

Although jmle can execute a large subset of JML, much remains to be done.
Java and JML constructs that are currently not supported include exceptional
behavior specifications, signals clauses, history constraints, inheritance of speci-
fications from interfaces, and the features added in Java 1.5. Perhaps the most
critical area for future work is using jmle to execute specifications that are being
developed in industrial applications, in order to investigate the usefulness of the
system in practice. As such, we encourage anyone who is interested in obtaining
and evaluating jmle to contact the second author via email.

References

1. Grieskamp, W.: A computation model for Z based on concurrent constraint reso-
lution. In Bowen, J.P., Dunne, S., Galloway, A., King, S., eds.: ZB 2000: Formal
Specification and Development in Z and B, First International Conference of Z and
B Users. Volume 1878 of Lecture Notes in Computer Science., York, UK, Springer-
Verlag (2000) 414 – 432

2. Wahls, T., Leavens, G.T., Baker, A.L.: Executing formal specifications with con-
current constraint programming. Automated Software Engineering 7(4) (2000)
315 – 343

3. Bouquet, F., Dadeau, F., Legeard, B., Utting, M.: Symbolic animation of JML
specifications. In: Proceedings of the International Conference on Formal Methods
2005 (FM’05). Volume 3582 of Lecture Notes in Computer Science., Springer-Verlag
(2005) 75 – 90

4. Wahls, T.: Compiling formal specifications to Oz programs. In van Roy, P., ed.: MOZ
2004, The Second International Mozart/Oz Conference. Volume 3389 of Lecture
Notes in Computer Science., Springer-Verlag (2005) 66 – 77

5. Leuschel, M., Butler, M.: ProB: A model checker for B. In Araki, K., Gnesi, S.,
Mandrioli, D., eds.: FME 2003: Formal Methods. LNCS 2805, Springer-Verlag (2003)
855–874

6. Burdy, L., Cheon, Y., Cok, D., Ernst, M., Kiniry, J., Leavens, G.T., Leino, K.R.M.,
Poll, E.: An overview of JML tools and applications. International Journal on
Software Tools for Technology Transfer (STTT) 7(3) (2005) 212–232

7. Abdennadher, S., Krämer, E., Saft, M., Schmauss, M.: JACK: A Java constraint kit.
In Hanus, M., ed.: Electronic Notes in Theoretical Computer Science. Volume 64.,
Elsevier (2002)

8. Cheon, Y., Leavens, G.T.: A runtime assertion checker for the Java Modeling Lan-
guage (JML). In Arabnia, H.R., Mun, Y., eds.: Proceedings of the International
Conference on Software Engineering Research and Practice (SERP ’02), Las Vegas,
Nevada, USA, June 24-27, 2002, CSREA Press (2002) 322–328

Goanna—A Static Model Checker

Ansgar Fehnker1, Ralf Huuck1, Patrick Jayet2,�, Michel Lussenburg2,�,
and Felix Rauch1

1 National ICT Australia Ltd. (NICTA)�� and University of New South Wales,
Locked Bag 6016, NSW 1466, Australia

2 Department of Computer Science, Swiss Federal Institute of Technology (ETH),
CH-8092 Zurich, Switzerland

Abstract. In this work we present Goanna, the first tool that uses an
off-the-shelf model checker for the static analysis of C/C++ source code.
We outline its architecture and show how syntactic properties can be ex-
pressed in CTL. Once the properties have been defined the tool analyses
source code automatically and efficiently. We demonstrate its applica-
bility by presenting experimental results on analysing OpenSSL and the
GNU coreutils.

1 Introduction

Formal design and analysis techniques are successfully applied to hardware. In
fact, model checking parts of the chip design is common practice. However, the
application of verification technology to existing and complex software has been
much less successful.

The reasons are manifold: Full formal verification as done by interactive theo-
rem proving is expensive. It requires a lot of time and expertise, making it often
impractical for software that has a short life cycle, is not highly safety-critical, or
suffers from a high pressure to market. Algorithmic verification techniques have
to deal with software’s infinite state space, requiring abstraction techniques to
make properties of interest decidable. Suitable abstractions are typically hard to
compute and the overall interaction required by the user in order to apply them
to real-life software are often considerable.

One area that has been successful is static analysis [1,2]. Approaches such as
abstract interpretation, data flow analysis and other static checking techniques
have made it into several industrial strength tools.

In this work we present Goanna [3], a static analysis tool for C/C++ source
code based on model checking. It uses the NuSMV [4] model checker as the
underlying verification engine, allows the specification of user defined properties

� This work was carried out while visiting NICTA.
�� National ICT Australia is funded by the Australian Governments Department of

Communications, Information Technology and the Arts and the Australian Research
Council through Backing Australias Ability and the ICT Research Centre of Excel-
lence programs.

L. Brim et al. (Eds.): FMICS and PDMC 2006, LNCS 4346, pp. 297–300, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

298 A. Fehnker et al.

and scales well to commercial size software. Since Goanna does not require any
user interaction it makes it particularly suited to be integrated into the software
development process. Moreover, it is the first step of bringing static analysis and
software model checking closer together by providing one uniform framework.

2 Technology

The basic ideas of solving static analysis problems by model checking have been
first developed by Steffen and Schmidt [5]. While their main focus has been
on developing a safe approximation of the program’s behaviour to check for
safety properties, we abandon in some cases the soundness of the analysis for
effectiveness. This means we can check for full CTL including (syntactic) liveness
properties.

The CTL model checking problem is encoded in two steps and we illustrate
this by a simple example. First we define the atomic propositions of interest we
like to reason about, e.g., whether a variable is declared, used, or assigned a value.
For a variable named x we write declx, usedx and assignedx for the respective
propositions. We use a pattern matching approach to relate certain patterns on a
program’s abstract syntax tree (AST) with propositions of interest. In a second
step we automatically extract the control flow graph (CFG) of a program and
label it with the previously determined propositions.

gcc

C/C++ source

model checker
input

NuSMV

Property

property
language

error reporting remediation

compute CFG
compute
labels

gcc

C/C++ source

model checker
input

NuSMV

Property

property
language

error reporting remediation

compute CFG
compute
labels

Fig. 1. Goanna architecture Fig. 2. Goanna results in Eclipse

The translation of an annotated CFG into a NuSMV model is rather straight-
forward and the encoding can be done in an efficient way resulting in a small
state space. Properties of interest can then be expressed as CTL formulae over
this model. E.g., checking for uninitialised variables can be expressed as follows:

AG declx ⇒ (A ¬usedx W assignedx)

This means we require that on all program paths if a variable is declared it
must not be used until it has a value assigned or it will not be used at all. We

Goanna—A Static Model Checker 299

use the weak until operator W here to include the second possibility. The latter
can also point to unused variables, which is checked separately.

Our tool chain is depicted in Figure 1. We use gcc as a front end, as one
of its features allows us to easily output the AST of C/C++ programs in an
intermediate language. We parse the AST and on the one hand generate the CFG
from it and on the other hand match patterns on the AST, which constitute the
atomic propositions of a CTL formula expressing the desired property. We label
the CFG with atomic propositions where their respective patterns were matched.
Once the patterns and the CTL formula have been specified, the translation of
the C/C++ source code into a suitable NuSMV model and its checking is fully
automatic.

The current implementation is developed in OCaml. Goanna is easily inte-
grated in Makefiles and, thus, is automatically supported by development envi-
ronments such as Eclipse. A screen shot of Goanna running in combination with
Eclipse can be found in Figure 2. As a result we obtain a seamless integration
into the overall software development process.

3 Application

To evaluate the applicability of our tool, we examine two real-world open-
source software packages: The GNU coreutils1, which provide basic file, shell
and text manipulation utilities (59 kLoC2), and the OpenSSL3 toolkit imple-
menting the Secure Sockets Layer (SSL) and Transport Layer Security (TLS)
protocols (260 kLoC). We analyse the source code of these two packages on a
recent 3.4 GHz Xeon-processor-based server.

Analysing the whole source with our current Goanna tool (which has not yet
been optimised) takes slightly less than 2 minutes for the coreutils and slightly
less than 29 minutes for OpenSSL. The latter is somewhat distorted by a single
pathological file that takes almost 12 minutes to analyse. In practice, analysis
times are typically much shorter, because the analysis can be done incrementally
on the set of recently changed files only and a more in-depth study of Goanna’s
analysis times shows that a large majority of source files is analysed quite quickly.
In fact, 72% of all source files in the coreutils are analysed in less than 1 second
and 95% under 5 seconds. Similarly, for OpenSSL 83% of all files are analysed
in under 1 second and again 95% under 5 seconds.

Note that the current prototype has not yet been optimised regarding execu-
tion time. Hence, there is still a lot of room for performance improvements, for
example by optimising the search in the AST for patterns of interest (which cur-
rently contains redundant searches for different properties), the OCaml
library we use to conduct the search on the AST (which is convenient to use
but not efficient), or by changing the way in which we use NuSMV (which is

1 http://www.gnu.org/software/coreutils/
2 LoC = Lines of Code, kLoC = 1000 Lines of Codes
3 http://www.openssl.org/

http://www.gnu.org/software/coreutils/
http://www.openssl.org/

300 A. Fehnker et al.

currently invoked with rather large chunks of source code at the time that could
be reduced to smaller pieces).

Looking at the memory requirements of our tool we find that the maximum
memory consumption of the analysis is about 65 MiB to analyse the coreutils
and about 113 MiB for OpenSSL respectively. This is in both cases much below
the limit set by todays PCs used by developers.

The above numbers show that the tool is already quite usable in practice. A
full evaluation of course requires also an analysis of the precision of the tool,
with looking at the number of real bugs found and the number of false positives
reported. Such a study is very time consuming and we are still in the process
of qualitatively evaluating Goanna regarding its precision. Preliminary results
indicate that the precision of our approach is comparable to standard static
analysis.

4 Conclusion

In this work we presented Goanna, the first static analyser purely based on an
off-the-shelf model checker. We demonstrated that the approach scales well to
real-life software, making it suitable for the integration into the overall software
development process.

While Goanna is fast, it is not yet more precise than traditional static analysis.
However, we anticipate to improve on this by incorporating more semantic-based
software model checking techniques such as predicate abstraction [6]. The foun-
dation of this integration has been laid by having a uniform framework for static
analysis as well as traditional model checking.

References

1. Engler, D.R., Musuvathi, M.: Static analysis versus software model checking for
bug finding. In: ”VMCAI ’04: 5th Intl. Conference Verification, Model Checking
and Abstract Interpretation”. (2004) 191–210

2. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné;, A., Monni-
aux, D., Rival, X.: Design and implementation of a special-purpose static program
analyzer for safety-critical real-time embedded software. (2002) 85–108

3. NICTA: The Goanna Project. (http://ertos.nicta.com.au/research/goanna/)
4. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,

Sebastiani, R., Tacchella, A.: NuSMV Version 2: An OpenSource Tool for Symbolic
Model Checking. In: Proc. International Conference on Computer-Aided Verification
(CAV 2002). Volume 2404 of LNCS., Springer (2002)

5. Schmidt, D.A., Steffen, B.: Program analysis as model checking of abstract inter-
pretations. In: SAS ’98: Proceedings of the 5th International Symposium on Static
Analysis, London, UK, Springer-Verlag (1998) 351–380

6. Ball, T., Cook, B., Levin, V., Rajamani, S.K.: SLAM and Static Driver Verifier:
Technology transfer of formal methods inside Microsoft. In: IFM 2004: 4th Interna-
tional Conference on Integrated Formal Methods. Volume 2999 of LNCS., Springer-
Verlag (2004) 1–20

Parallel SAT Solving in Bounded Model Checking�

Erika Ábrahám1,3, Tobias Schubert1, Bernd Becker1,
Martin Fränzle2, and Christian Herde2

1 Albert-Ludwigs-Universität Freiburg, Germany
2 Carl von Ossietzky Universität Oldenburg, Germany

3 RWTH Aachen, Germany

Abstract. Bounded Model Checking (BMC) is an incremental refutation tech-
nique to search for counterexamples of increasing length. The existence of a
counterexample of a fixed length is expressed by a first-order logic formula that
is checked for satisfiability using a suitable solver.

We apply communicating parallel solvers to check satisfiability of the BMC
formulae. In contrast to other parallel solving techniques, our method does not
parallelize the satisfiability check of a single formula, but the parallel solvers work
on formulae for different counterexample lengths. We adapt the method of con-
straint sharing and replication of Shtrichman, originally developed for sequential
BMC, to the parallel setting. Since the learning mechanism is now parallelized,
it is not obvious whether there is a benefit from the concepts of Shtrichman in
the parallel setting. We demonstrate on a number of benchmarks that adequate
communication between the parallel solvers yields the desired results.

1 Introduction

The term Bounded Model Checking [16,8] refers to symbolic analysis techniques check-
ing finite unravelings of transition systems for satisfaction of a formal specification.
While originally being confined to a refutation technique based on an incremental
search for counterexamples of increasing length, there are now several extensions to
recognize fixed points and allow system verification (see e.g. [12]). Basically, given
a system together with a specification, the existence of counterexamples of increas-
ing length k = 0, 1, . . . is expressed by first-order formulae ϕk that are checked for
satisfiability by a solver suitable for the underlying logic. For discrete systems a SAT
solver is used, while the analysis of linear hybrid automata, for example, requires the
application of a combined SAT-LP solver. Some popular solvers are, e.g., zChaff [24],
BerkMin [15], MiniSAT [13], HySat [14], MathSAT [5], CVC Lite [6], and ICS [10].

Given the high computational cost of checking large BMC instances and driven by
the advent of affordable multiprocessor machines, research recently focusses on the de-
velopment of parallel BMC techniques, too. The main line of research applies parallel
solvers to the same BMC instance, that means, the solvers work on the satisfiability

� This work was partly supported by the German Research Council (DFG) as part of the Trans-
regional Collaborative Research Center “Automatic Verification and Analysis of Complex Sys-
tems” (SFB/TR 14 AVACS).

L. Brim et al. (Eds.): FMICS and PDMC 2006, LNCS 4346, pp. 301–315, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

302 E. Ábrahám et al.

check of the same formula ϕk. Thereby, the overall search space is divided into disjoint
parts which are then treated by the involved processes.

Parallel SAT algorithms can be traced back to at least 1994, where Böhm and Speck-
enmeyer presented an approach for a transputer system with up to 256 processors [9].
In subsequent years, a number of more advanced implementations have been devel-
oped. Two of the most powerful distributed SAT solvers nowadays are PaSAT [27] and
PaMira [25]. Both tools use many of the latest improvements in sequential SAT solv-
ing, e.g., conflict-driven learning combined with non-chronological backtracking, vari-
ous efficient decision heuristics, and zChaff’s concept of watched literals. Additionally,
PaMira employs Early Conflict Detection BCP and Implication Queue Sorting [20].
Both features together result in a significantly reduced number of clauses the BCP stage
has to deal with, and by this substantially increase the overall performance.

PaSAT and PaMira also support the exchange of information about the problem in-
stance under consideration, usually encoded as conflict clauses. In traditional parallel
SAT solvers the processes independently generate conflict clauses for their own usage
(in [27] also referred to as lemmas). Every conflict clause, generated by a conflicting
assignment of the variables, is a piece of information that the corresponding process
has learnt about the problem and that might be helpful to cut off parts of the search
space. If the solvers share their knowledge, consisting of their conflict clauses, then this
information enables them to avoid descending into parts of the search tree that have
already been proven to be unsatisfiable by other solvers. If a solver, receiving a conflict
clause, is currently analyzing such an unsatisfiable sub-tree then it can immediately
stop its analysis of the current part of the search tree. Thus exchanging conflict clauses
is helpful in increasing the performance of the overall system.

In this work we introduce a different kind of parallelization of BMC: instead of
applying a distributed SAT solver to a single BMC instance, we do concurrently address
the satisfiability check for different counterexample lengths through parallel solvers.

In a naive setting, without relating the SAT-checks of different BMC instances, such
a parallelization would immediately provide ideal, linear speedup. Solvers optimized
towards BMC do, however, exploit constraints of earlier SAT-checks to aggressively
prune the search space of the subsequent ones (see e.g. [26,14,2]). These pruning tech-
niques are developed for sequential execution. Our primary goal is to preserve linear
speedup even when parallelizing such optimized BMC engines.

The BMC formulae ϕk for different ks describe similar problems, i.e., the formulae
have some common sub-formulae. We make use of this fact and let the parallel solvers
exchange information in the form of conflict clauses. However, knowledge sharing is
not as simple as before: In parallel SAT solvers like PaSAT or PaMira, as described
above, the solvers communicate conflict clauses in order to help each other with in-
formation which part of the state space does not need to be searched through. Without
modification, this method does not work in our case when the different solvers have to
solve different problems: a conflict clause, generated by some solver, may result from
clauses that some of the other solvers do not have in the clause set they have to satisfy
and thus those other solvers must not make use of that conflict clause.

In [14,2] we dealt with constraint sharing and replication (CSR) in the style of
Shtrichman [26]. Recall, that sequential BMC defines a sequence of SAT problems

Parallel SAT Solving in Bounded Model Checking 303

ϕ0, ϕ1, . . ., which are checked sequentially one after the other. CSR can be seen as a
method of communicating at the interface between the different BMC SAT problems:
the conflict clauses after the SAT check of one problem are analyzed and used to prune
the check of the following BMC problems when possible. Constraint sharing re-uses
those conflict clauses whose generation involved only clauses that are part of the next
SAT problem, too. Constraint replication shifts conflict clauses in time: if all clauses
involved in the generation of a conflict clause are present in the next SAT check with
the same variables but at different computation depth, i.e., with different indices, then
we can insert that conflict clause after renaming the variables accordingly. Constraint
replication can also be applied on-the-fly. In that case, shifted copies of new conflict
clauses are added immediately after conflict resolution, when possible.

In the context of the AVACS project [1] we are interested in the analysis of linear
hybrid automata. Linear hybrid automata are transition systems with mixed discrete-
continuous behavior. Additionally to the discrete part, time passes while control stays in
the locations, and the values of the real-valued variables evolve continuously according
to some linear flows.1 Consequently, the BMC formulae for linear hybrid automata are
not only Boolean combinations of Boolean variables, but additionally of some linear
constraints over the real-valued variables.

In [14,2] we showed that CSR speeds up the satisfiability checks remarkably not
only for discrete systems (e.g. circuits) but also for linear hybrid automata. Our expe-
rience shows that in the mixed discrete-continuous case the search in the real domain,
involving some LP solving techniques, is very time-consuming. Thus, for the hybrid
case CSR is especially important to make use of the conflicts found in the real domain.

Now, if we start several SAT solvers running in parallel and solving BMC problems
for different counterexample lengths independently using CSR, the expected speedup of
CSR plus the linear speedup due to parallelization will not be reached. The reason is
the following: In sequential BMC with CSR, each BMC instance is solved completely
before the next check starts. As CSR re-uses the conflict clauses, the forthcoming check
will not run into the same conflicts again. However, in the parallel case, if the differ-
ent solvers do not communicate, they may find the same conflict independently, thus
wasting time.

Even if the solvers communicate, yielding constraint sharing, we need to apply con-
straint replication to the communicated clauses immediately after communication, in
order to get the same speedup as in the sequential case for each of the solvers. Without
immediate constraint replication, the different solvers often find the same problem at
different time instances. This entails on the one hand unnecessarily finding the same
conflict twice, and on the other hand increased constraint propagation time: constraint
replication at the beginning of the SAT checks may produce lots of subsumed clauses.

In this paper we integrate the standard parallel SAT-solving paradigm and CSR in
the context of BMC. We parallelize the learning algorithm using communicating SAT
solvers such that we can keep the speedup of the sequential case for each of the parallel
solvers and at the same time, due to parallelization, the experiments show an additional
linear speedup.

1 The linearity of the flows allows us to express the BMC formulae in a decidable logic for
which efficient solvers are available.

304 E. Ábrahám et al.

The rest of the paper is structured as follows: Section 2 deals with BMC and SAT
solving, and Section 3 describes our parallelization technique. In Section 4 we present
the experimental results, and finally we draw conclusions in Section 5.

2 Bounded Model Checking

We first give a short review of bounded model checking [16,8] and briefly describe how
state-of-the-art SAT solvers check satisfiability of propositional formulae. In this paper
we restrict ourselves to safety properties; for lifeness properties see e.g. [8].

2.1 Encoding Finite Transition Systems

Given a finite transition system, its initial condition and transition relation can be de-
scribed by propositional formulae Init(s) and Transt(s, s′) for all t ∈ T with T the
set of transitions, where s and s′ explicitly denote the free variables occurring in the
given formulae: s = (v0, . . . , vm) contains all variables and s′ = (v′0, . . . , v

′
m) copies

of them in order to describe the target valuation after a transition.
Let Safe(s) be a propositional formula describing a safety property of the system.

Counterexamples of a fixed length k, i.e., runs of length k violating the property Safe
in their final state, can be described by the following formula:

ϕk(s0, . . . , sk) = Init(s0) ∧
(∧

i=0,...,k−1
∨

t∈T Transt(si, si+1)
)

∧ ¬Safe(sk) .

Starting with k = 0 and iteratively increasing k ∈ N, BMC checks whether the BMC
instances ϕ0, ϕ1, ϕ2, . . . are satisfiable. The algorithm terminates at depth k if ϕk is
satisfiable, i.e., an unsafe state is reachable from an initial state in k steps.

2.2 Satisfiability Checking

The formulae ϕk describing counterexamples of length k are checked for satisfiability
by a traditional SAT solver.

First, the Boolean formula is transformed into a conjunctive normal form (CNF). In
order to keep the formula as small as possible, auxiliary Boolean variables are used
to build the CNF [30]. A formula in CNF-form is a conjunction of clauses, while
each clause is the disjunction of literals. We distinguish between positive literals be-
ing Boolean variables, and negative literals being negated ones.

In order to satisfy the formula, each of the clauses must be satisfied, i.e., at least one
literal in each clause must be true. The SAT solver assigns values to the variables in
an iterative manner. After each decision, i.e., free choice of an assignment, the solver
propagates the assignment by searching for unit-clauses, i.e., clauses in that all literals
but one are already false; the remaining literal is implied to be true, since otherwise the
clause would not be satisfied.

If two unit-clauses imply different values for the same variable, a conflict occurs.
In this case a conflict analysis can take place which results in nonchronological back-
tracking and conflict learning [22,33]. Intuitively, the solver applies resolution to some

Parallel SAT Solving in Bounded Model Checking 305

unit-clauses, using the implication tree, and inserts a new conflict clause thereby strength-
ening the problem constraints and restricting the state space for further search.

For performing the experiments of Section 4, we developed our own SAT solver,
which – from a top level point of view – works quite similarly to zChaff [24] and Berk-
Min [15]. While not being as optimized as other state-of-the-art solvers, it incorpo-
rates most of the algorithms employed by modern SAT engines to accelerate the search
process, like conflict-driven learning, non-chronological backtracking, and watched lit-
erals. The development of our own solver was necessary for our experiments, since there
is no parallel solver available which supports constraints over the reals, as necessary for
checking hybrid automata.

Our tool exploits the concept of lazy theorem proving [7] to provide a decision pro-
cedure for LinSAT formulae, i.e. CNFs where the atoms can be both propositional vari-
ables and linear inequations over the reals. It tightly integrates a Davis-Putnam style
SAT solver with a linear programming (LP) routine, combining the virtues of both meth-
ods: LP adds the capability of solving large conjunctive systems of linear inequalities
over the reals, whereas the SAT solver accounts for fast Boolean search and efficient
handling of disjunctions (see e.g. [32,5,7,11]). The basic idea of the integration is to
build a Boolean abstraction of the hybrid problem by replacing each non-propositional
constraint occuring in the input formula by a fresh auxiliary Boolean variable. The SAT
solver checks the satisfiability of a Boolean abstraction, while the LP solver checks the
consistency of the assignments in the real domain.

2.3 Symmetries of BMC Problems

The formulae of BMC problems have a special structure: they describe computations,
starting from an initial state, executing k transition steps, and leading to a state violat-
ing the specification. Accordingly, the set of clauses generated by the SAT solver can be
grouped into clauses describing (1) the initial condition (I-clauses), (2) one of the tran-
sitions (T-clauses), and (3) the violation of the specification (S-clauses). Furthermore,
the T-clauses can be grouped into k groups describing the k computation steps. Those k
T-clause groups describe the same transition relation, but at different time points. That
means, they are actually the same up to variable renaming. For example, some BMC
problem for counterexample length k = 3 could be represented by a clause set like
this:2

I-clauses T-clauses S-clauses
(x0 ∨ y0), . . . (x0 ∨ y1 ∨ z0), . . . , (x1 ∨ y1 ∨ z0) (y3 ∨ z3), . . .

(x1 ∨ y2 ∨ z1), . . . , (x2 ∨ y2 ∨ z1)
(x2 ∨ y3 ∨ z2), . . . , (x3 ∨ y3 ∨ z2)

We say that a T-clause describing the ith transition step is a T[i−1,i]-clause, since it in-

volves state-vector components with indices i−1 to i; we call i−1 the lower boundary
and i the upper boundary of the clause. Similarly, I-clauses are also called I[0,0]-clauses

2 The value of a Boolean variable v in the ith state of the computation is denoted by vi, the value
of its negation by vi.

306 E. Ábrahám et al.

and S-clauses in iteration k also S[k,k]-clauses. We also write T[i,≤j] when being unspe-
cific about the upper boundary i ≤ j′ ≤ j; we use similar notation for I- and S-clauses
and lower boundaries. Furthermore we say that we shift a clause by d meaning that we
replace each variable index i by i + d.

2.4 Constraint Sharing and Replication

Usually, the conflict clauses learned during the SAT check of a BMC instance ϕk get
removed before the satisfiability check of the next BMC instance ϕk+1. However, they
can also be partially re-used in the style of Shtrichman [26], thereby excluding search
paths from the SAT search already before the search starts: If a conflict clause is the
result of a resolution applied to clauses that are present also in the next BMC iteration,
then the same resolution could be applied in the new setting, too, and thus we can
keep those conflict clauses. Furthermore, if all clauses used for resolution to generate
a conflict clause are present with a shifted instance, then the same resolution could be
made using the shifted instances. Accordingly, we distinguish between the following
conflict clause types:

– I[0,j]-conflict-clauses are the result of resolution applied to I[0,≤j]- and possibly
T[≥0,≤j]-(conflict-)clauses. They can be re-used without any modification in all
iterations k′ ≥ j.

– S[i,k]-conflict-clauses are the result of resolution applied to S[≥i,k]- and possibly
T[≥i,≤k]-(conflict-)clauses. They can be re-used in all iterations k′ ≥ k − i when
shifted by k′ − k.

– T[i,j]-conflict-clauses are the result of resolution applied to (conflict) clauses of
type T[≥i,≤j]. They can be inserted in iteration k′ ≥ j − i in all instances shifted
by −i, . . . , k′ − j.

– IS-conflict-clauses are the result of resolution applied to (conflict) clauses of both
types I and S. They cannot be re-used in other iterations.

In a sequential setting, a single solver is used to check all the BMC formulae for
incremental counterexample lengths. Thereby, the conflict clauses can be re-used in the
above manner: before each iteration k, the conflict clauses generated in the iterations
less than k are analyzed and adapted to the depth k. Alternatively, T-conflict-clauses
can also be replicated on-the-fly directly after their generation, within the width of the
current BMC instance.

2.5 Extension to Linear Hybrid Automata

The previously presented approach can be naturally extended to BMC of linear hy-
brid automata. Hybrid automata [3,18] are a formal model to describe systems with
combined discrete and continuous behavior. We consider the class of linear hybrid au-
tomata, whose behavior can be described by Boolean combinations of linear (in)equa-
tions over real-valued variables.

Applying BMC, counterexamples of a linear hybrid automaton can be encoded sim-
ilarly to that of a finite transition system. In the hybrid case the underlying logic is the
existential fragment of the first-order logic over (R, +, <, 0, 1), i.e., formulae are the

Parallel SAT Solving in Bounded Model Checking 307

Boolean combinations of (in)equations over linear terms using real-valued variables.
The satisfiability check of those formulae is done by a combined SAT-LP solver. For
a detailed description of the encodings, the satisfiability checks, and for optimizations
see [2].

3 Parallel BMC

We are going to transfer the BMC technique into a parallel setting. Assume n solvers
running in parallel, where each solver checks a different BMC instance of the same
system for satisfiability. An additional master process makes the book-keeping of the
BMC problems already checked and assigns the unresolved instances to the distributed
solvers. When becoming idle due to completion of its previous instance, each solver
asks the master process which counterexample length to check next. Starting at 0, the
master distributes the problem instances in the order of increasing unraveling depth.

After receiving the first BMC instance to check, each solver generates the corre-
sponding clause set and starts the satisfiability check.

If one of the solver runs into a conflict, it generates a conflict clause, which is then
sent to the master process. In addition to the literals constituting the clause, the solver
sends the conflict’s type and boundaries. For example, the sequence of literals of a T[i,j]-
conflict-clause is augmented with the information that it is a T-clause with boundaries
i to j. IS-conflict-clauses are not sent, since they cannot be re-used in other iterations.
After sending, the solver replicates the conflict clause, if possible, and the SAT algo-
rithm continues. During replication, we remember which clause is the highest instance
of the conflict, i.e., the one shifted by the highest value. To avoid multiple copies, only
the highest instance will be shifted in future.

In order to benefit from conflict clauses generated by other solvers, each solver fre-
quently fetches from the master new conflict clauses sent by the other solvers. Note that
solvers receiving some clauses do actually process a BMC instance of another length
than the sending solver does. Therefore, a solver checking iteration k may receive a
T[i,j]-conflict-clause with j − i > k. In this case, the solver must not yet make use of
the clause, but may of course memorize it for later use when it attacks a larger BMC
instance.

Thus each receiving solver checks whether it can currently make use of the received
conflict clause. If so, the clause and possible replications get inserted into the solver’s
clause set. S-clauses get shifted into the right position before insertion. Again, when
replicating T-clauses, the highest instance is marked. It is important that received con-
flict clauses are replicated on-the-fly directly after their reception, and not later before
the next satisfiability check: If different shifted instances of the same conflict are found
or received, the solver would replicate all of them before the next check, resulting in
multiple copies of the same clauses. That would increase propagation time.3 Replicating
on-the-fly alleviates this problem, since all processes insert all possible shifted instances
within a small time frame, such that the probability that two solvers find the same con-
flict in the same or in a different instance is significantly reduced (see Section 4 for
some experimental results).

3 One could also employ subsumption checks to avoid this effect.

308 E. Ábrahám et al.

Otherwise, if the width of the conflict is too large for the current iteration of the
receiver, the clause is inserted as a silent clause: though it is syntactically stored, it will
not influence the current SAT check.

Before a solver starts a new iteration, it adds possible new replications of the al-
ready active T-conflict-clauses, adapts the S-conflict-clauses, and deletes all IS-conflict-
clauses. Note that, in order to reduce subsumption, only the highest instances get shifted
with all possible positive values, and the new highest instances get marked. Besides that,
the solver checks which silent clauses may be activated and eventually replicated. In the
above example, the solver may make use of the previously silent T[i,j]-conflict-clause
when the new iteration k′ that the solver is going to check is at least j − i. In this case
the conflict clause shifted by −i, . . . , k′ − j can be added to the clause set.

The above mechanisms aim at preserving linear speedup from parallelization even
if constraint sharing is used, a mechanism that suits the sequential world better. Com-
munication between the solvers has the role of knowledge transfer, such that none of
the solvers has disadvantages from the fact that it does not compute each BMC instance
incrementally, but skips over some that get computed by the others. In the next section
we show by means of benchmarks that without exchanging conflict clauses, the effect
of constraint sharing and replication in the parallel case does not yield the same speedup
as in the sequential setting.

4 Experimental Results

We implemented a prototype SAT solver which works mainly as described in Sec-
tion 2.2. For communication we use MPICH2 [17], an implementation of the Massage
Passing Interface (MPI) standard. It is worth to mention that our approach works well
only if communication is very fast. To satisfy this requirement, we designed the com-
munication as simple as possible. It is very important that a process does not loose time
by checking incoming messages if no message is there, or that it does not have to wait
long when sending. Direct synchronous communication between the solvers seems to
be disadvantageous, since the processes have to wait for each other. MPICH supports
buffered, i.e., asynchronous communication, only in a restricted manner: there is a fast
algorithm to check whether there have arrived some messages along some channels, but
it can happen that a process must wait when sending if the buffer is full. For that reason,
we introduce an additional master process acting as a communication hub and provid-
ing sufficient buffer capacity (see also [19,23] for such master-solutions). The master
receives messages from the solvers, buffers copies for all other solvers, and forwards
them when the solvers are ready to receive. This way communication can proceed with-
out long waiting times. Thus we have one more process, but the solvers themselves need
negligible time for communication (for experimental results see Figure 3).

For our experiments we used a network of 4 computers each having two AMD
Opteron(tm) 250/252 processors with 2400-2600 MHz, 1024 kB L2 cache, and be-
tween 4 and 16 GB of main memory. We measured the relative performance of 1, 2, and
5 parallel solvers supported by a master process. We performed experiments with com-
municating solvers using constraint sharing and replication. To test the effectiveness

Parallel SAT Solving in Bounded Model Checking 309

of these algorithmic enhancements, we also measured the running times when the
solvers do not use constraint sharing and replication or when no communication takes
place.

The running times (except in Figure 3) are given as the CPU times per processor for
each BMC iteration. For each iteration, the CPU time per processor is computed as the
runtime of that instance divided by the number of parallel solvers. Thus the depicted
values correspond to the system time: the sum of the values for the iterations 0 to k is
approximately the system time up to iteration k.

The running times contain the CPU times for the SAT checks including the commu-
nication times as well as the times needed for the generation of the BMC problems for
the different counterexample lengths. We have run each experiment 4 times and show
the average results below.

To give an example of a discrete benchmark, we applied BMC to check invariants of
UsbPhy (Universal Serial Bus), taken from the VIS benchmark suite [28,31]. As for
hybrid automata, we applied BMC to Fischer’s mutual exclusion protocol [21] for 2, 3,
and for 4 processes. The specification states the mutual exclusion property, i.e., that at
each time point there is at most one process in its critical section. The Railroad Crossing
[18] is a further hybrid benchmark. It consists of 3 parallel automata modeling a train, a
railroad crossing gate, and a controller. The specification requires that the gate is always
fully closed when the train is close to the railroad crossing. Further hybrid benchmarks
are a model of an elastic approach to train distance control and a model of a Renault
Clio 1.9 DTI RXE, equipped with a simple cruise controller as reported in [29].4 To
test the behavior also for deep counterexample search, we have chosen invariant safety
properties, i.e., there exists no counterexample for the systems used, but for the elastic
train train control at depth 22.

Figure 1 shows results for different settings for Fischer’s protocol for 4
processes. Figure 1 a) motivates CSR by comparing the running times for a single
solver with and without CSR. For all the benchmarks applied, CSR leads to substan-
tially shorter running times.

Figure 1 b) shows what happens when parallelizing the solver with applying CSR
but without communicating information between the solvers. I.e., CSR is only applied
locally on a per-solver basis. The speedup due to parallelization is very small; the run-
ning times are sometimes even longer for the parallelized version than for the sequen-
tial setting. The reason is illustrated in Figure 1 c) by listing the number of conflicts
in each iteration. Without communication, the number of conflicts may increase when
employing more solvers. When a solver has computed a problem instance k and starts
to compute a new instance k′ > k, then during the computation of the new instance k′

it will find conflicts that already occurred in other solvers computing instances between
k and k′. However, since the solver computing k′ is not informed about those conflicts,
it may run into the same conflicts again.

To complete the picture, Figure 1 d) compares the running times when using
CSR with and without communication between the solvers. Figure 1 e) shows the

4 These two hybrid benchmarks are very complex in the real domain, i.e., the satisfiability check
of their BMC instances requires a massive usage of the LP-solver. This yields, at least for deep
BMC instances, long running times even for only a few conflicts.

310 E. Ábrahám et al.

 0

 50

 100

 150

 200

 250

 300

 0 20 40 60 80 100

ru
nn

in
g

tim
e

[s
ec

]

depth k

Fischer’s protocol for 4 processes

1 solver, no CSR
1 solver, CSR

a)

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60 70 80 90 100

ru
nn

in
g

tim
e

[s
ec

]

depth k

Fischer’s protocol for 4 processes

1 solver, CSR
2 solvers, CSR, no comm
5 solvers, CSR, no comm

b)

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000

 0 10 20 30 40 50 60 70 80 90 100

N
um

be
r

of
 c

on
fl

ic
ts

depth k

Fischer’s protocol for 4 processes

1 solver, CSR
2 solvers, CSR, no comm
5 solvers, CSR, no comm

c)

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60 70 80 90 100

ru
nn

in
g

tim
e

[s
ec

]

depth k

Fischer’s protocol for 4 processes

5 solvers, CSR, no comm
5 solvers, CSR, comm

d)

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000

 0 10 20 30 40 50 60 70 80 90 100

N
um

be
r

of
 c

on
fl

ic
ts

depth k

Fischer’s protocol for 4 processes

5 solvers, CSR, no comm
5 solvers, CSR, comm

e)

 0

 10

 20

 30

 40

 50

 0 20 40 60 80 100

ru
nn

in
g

tim
e

[s
ec

]

depth k

Fischer’s protocol for 4 processes

2 solvers, no on-the-fly replication
2 solvers, on-the-fly replication

f)

Fig. 1. CPU times per processor and iteration in different settings for Fischer’s protocol for 4
processes

corresponding number of conflicts for each iteration. Communication between the solvers
massively reduces the increment of the conflicts with a growing number of solvers. We
observe that communication becomes more and more important when increasing the
number of solvers, since the number of iterations that are skipped over by a solver after
finishing instance k and before starting a new instance k′ increases, and so the number
of conflict clauses the solver did not get informed about. The last diagram f) of Figure 1
shows for two communicating solver using CSR the effect when not applying on-the-fly
constraint replication, but replicating only at the beginning of a new SAT check.

Figure 2 shows the running times for the different benchmarks, when applying par-
allelized CSR and communication. We obtain, that the running times of the sequential

Parallel SAT Solving in Bounded Model Checking 311

 0

 2

 4

 6

 8

 10

 12

 0 50 100 150 200

ru
nn

in
g

tim
e

[s
ec

]

depth k

VIS benchmark: usb

1 solver, CSR
2 solvers, CSR, comm
5 solvers, CSR, comm

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 20 40 60 80 100 120 140 160 180 200

ru
nn

in
g

tim
e

[s
ec

]

depth k

Railroad crossing

1 solver, CSR
2 solvers, CSR, comm
5 solvers, CSR, comm

 0

 10

 20

 30

 40

 50

 0 5 10 15 20

ru
nn

in
g

tim
e

[s
ec

]

depth k

Cruise controller

1 solver, CSR
2 solvers, CSR, comm
5 solvers, CSR, comm

 0
 5

 10
 15
 20
 25
 30
 35
 40

 0 5 10 15 20

ru
nn

in
g

tim
e

[s
ec

]

depth k

Train distance control

1 solver, CSR
2 solvers, CSR, comm
5 solvers, CSR, comm

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

 0.4
 0.45

 0.5

 0 20 40 60 80 100 120 140 160 180 200

ru
nn

in
g

tim
e

[s
ec

]

depth k

Fischer’s protocol for 2 processes

1 solver, CSR
2 solvers, CSR, comm
5 solvers, CSR, comm

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6

 0 20 40 60 80 100 120 140 160 180 200

ru
nn

in
g

tim
e

[s
ec

]

depth k

Fischer’s protocol for 3 processes

1 solver, CSR
2 solvers, CSR, comm
5 solvers, CSR, comm

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60 70 80 90 100

ru
nn

in
g

tim
e

[s
ec

]

depth k

Fischer’s protocol for 4 processes

1 solver, CSR
2 solvers, CSR, comm
5 solvers, CSR, comm

Fig. 2. CPU times per processor and iteration for different benchmarks with CSR and with
communication

312 E. Ábrahám et al.

Bench- depth M 1 solver 2 solvers 5 solvers 10 solvers
mark k Time C Time C Time C Time C

usb 200 1 973 (0) 13 487 (0) 13 201 (0) 13 99 (0) 13
2 990 (0) 1 491 (0) 1 197 (0) 1 100 (0) 1
3 − (−) − 504 (< 1) 1 201 (< 1) 1 103 (< 1) 1

Railroad 200 1 798 (0) 72 399 (0) 72 165 (0) 72 81 (0) 72
crossing 2 14 (0) 3 8 (0) 5 7 (0) 10 10 (0) 17

3 − (−) − 7 (< 1) 3 3 (< 1) 4 1 (< 1) 6
Cruise 20 1 2254(0) 798 1129(0) 798 454 (0) 798 225 (0) 798

controller 2 317 (0) 262 278 (0) 275 183 (0) 387 148 (0) 582
3 − (−) − 158 (< 1) 240 67 (< 1) 235 37 (< 1) 240

Train 22 1 120 (0) 9 62 (0) 9 27 (0) 9 13 (0) 9
distance 2 85 (0) 8 50 (0) 8 22 (0) 9 10 (0) 10
control 3 − (−) − 49 (< 1) 7 20 (< 1) 8 10 (< 1) 9

Fischer 2 200 1 242 (0) 258 121 (0) 258 47 (0) 258 23 (0) 258
2 16 (0) 6 9 (0) 10 5 (0) 24 3 (0) 46
3 − (−) − 8 (< 1) 6 3 (< 1) 5 1 (< 1) 6

Fischer 3 200 1 5688(0) 10830 2815(0) 10830 1093(0) 10830 552 (0) 10830
2 63 (0) 265 39 (0) 517 27 (0) 1222 24 (0) 2323
3 − (−) − 35 (1) 330 17 (2) 360 8 (3) 297

Fischer 4 100 1 nn (nn) nn nn (nn) nn 3945(0) 43514 1971(0) 43514
2 1186(0) 3268 1054(0) 6086 787 (0) 11944 820 (0) 23045
3 − (−) − 637 (11) 3289 341 (15) 3658 277 (9) 4259

Fig. 3. Total running times. Notations: Time=total SAT check time for all iterations up to depth k
(average communication time per solver in brackets) in seconds, C=average number of conflicts
per iteration, M=method. We distinguish the methods (1) without CSR and without communica-
tion, (2) with CSR but without communication, and (3) with CSR and with communication.

solver using CSR, which is already substantially shorter than without CSR, can be fur-
ther improved by a linear factor when using our parallel approach with communication.

Finally, Figure 3 shows for each benchmark the total running times, i.e., the sum of
the running times for all instances, up to the shown depth. We distinguish the methods
(1) without CSR, (2) with CSR but without communication, and (3) with CSR and with
communication. Besides the running times, the average total communication time per
solver is given in brackets. Note, that the communication is very fast; for most bench-
marks it amounts to less than 1 second. Additionally, the average number of conflicts
per iteration is listed. Again, the results are presented for 1, 2, and for 5 solvers. To give
an impression of the behavior for more massive parallelism, we also list the results for
10 parallel solvers. However, since we had only 8 CPUs but 11 processes (10 solvers
and a master), the listed running times, i.e., the average CPU times per solver, do not
correspond to the real system times observed, but state an estimated running time for 11
processors calculated based on measurements stemming from a time-sharing execution.

Since one single solver cannot communicate, the corresponding fields are not filled.
By nn we denote that the computation was timed out because the total running time
reached the timeout threshold of 10000 seconds.

To conclude the results, the experiments show that communication between parallel
solvers using CSR yields an additional linear speedup to the improvement of CSR.
Without communication, the effect of CSR gets worse with an increasing number of
solvers.

Parallel SAT Solving in Bounded Model Checking 313

5 Conclusions

In this paper we introduced a parallel SAT solving technique for bounded model check-
ing. The parallelization is different from existing approaches: instead of solving a single
problem instance using parallel solvers, we let different solvers solve different BMC in-
stances. In order to speed up the search, we apply constraint sharing and replication and
let the solvers communicate the conflict clauses found during their SAT checks. The
experiments performed show that the positive effect of constraint sharing and replica-
tion can only be preserved under parallelization if the solvers communicate the conflict
clauses among themselves. With communication, the full advantage of sequential CSR
can be maintained in the concurrent setting, yielding linear speedup from parallelization.

The efficiency of other parallelization techniques strongly depends on how the state
space gets split. The experiments show that our parallelization technique is stable: Each
BMC instance is solved by a single solver, and thus we do not have to split the state
space. With parallelized CSR we obtain a remarkable and consistent speedup for all
benchmarks used. As for future work, we will compare our results with the application
of other parallel SAT-solvers.

Furthermore, motivated by the positive findings obtained using our approach, we
will combine both kinds of parallelization: on the one hand, instead of having a single
solver checking each BMC instance, we will use a group of solvers for this purpose that
work in parallel on the same problem by sharing the search space, similarly to PaSAT
and PaMira. On the other hand, we will parallelize those solver groups as described
in this paper to check for existence of counterexamples of different lengths. This com-
bined approach we will build on the HySAT solver [14] which is more efficient than the
prototype solver employed for these experiments.

Acknowledgements. We thank Marc Herbstritt for supplying us with benchmarks. We
thank Henrik Bohnenkamp, Peter Schneider-Kamp, and Ivan Zapreev for their value-
able comments on the paper.

References

1. AVACS: Automatic Verification and Analysis of Complex Systems.
http://www.avacs.org.

2. E. Ábrahám, B. Becker, F. Klaedke, and M. Steffen. Optimizing bounded model checking
for linear hybrid systems. In R. Cousot, editor, Proc. of VMCAI’05, volume 3385 of LNCS,
pages 396–412. Springer-Verlag, 2005.

3. R. Alur, C. Courcoubetis, T. Henzinger, P. Ho, X. Nicollin, A. Olivero, J. Sifakis, and
S. Yovine. The algorithmic analysis of hybrid systems. Theoretical Computer Science,
138:3–34, 1995.

4. R. Alur and D. A. Peled, editors. Procceedings of the 16th International Conference on
Computer Aided Verification, CAV’04, Boston, MA, USA, July 13-17, 2004, volume 3114 of
LNCS. Springer-Verlag, 2004.

5. G. Audemard, P. Bertoli, A. Cimatti, A. Korniłowicz, and R. Sebastiani. A SAT based
approach for solving formulas over boolean and linear mathematical propositions. In
A. Voronkov, editor, Proc. of CADE’02, volume 2392 of LNAI. Springer-Verlag, 2002.

314 E. Ábrahám et al.

6. C. Barrett and S. Berezin. CVC Lite: A new implementation of the cooperating validity
checker. In Alur and Peled [4], pages 515–518.

7. C. Barrett, D. Dill, and A. Stump. Checking satisfiability of first-order formulas by incre-
mental translation to SAT. In Proc. of CAV’02, 2002.

8. A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking without BDDs.
In W. R. Cleaveland, editor, Proc. of TACAS’99, volume 1579 of LNCS, pages 193–207.
Springer-Verlag, 1999.

9. M. Böhm and E. Speckenmeyer. A Fast Parallel SAT-Solver – Efficient Workload Balancing.
Annals of Mathematics and Artificial Intelligence, 17(3–4):381–400, 1996.

10. L. de Moura and H. Rueß. An experimental evaluation of ground decision procedures. In
Alur and Peled [4], pages 162–174.

11. L. de Moura, H. Rueß, J. Rushby, and N. Shankar. Embedded deduction with ICS. In
B. Martin, editor, Proc. of HCSS’03, 2003.

12. L. de Moura, H. Rueß, and M. Sorea. Bounded model checking and induction: From refuta-
tion to verification. In W. J. Hunt and F. Somenzi, editors, Proc. of CAV’03, number 2725 in
LNCS, pages 14–26. Springer-Verlag, 2003.

13. N. Eén and N. Sörensson. An extensible SAT-solver. In E. Giunchiglia and A. Tacchella,
editors, Proc. of SAT’03, volume 2919 of LNCS, pages 502–518. Springer-Verlag, 2003.

14. M. Fränzle and C. Herde. Efficient proof engines for bounded model checking of hybrid
systems. ENTCS, 133:119–137, 2005.

15. E. Goldberg and Y. Novikov. BerkMin: A Fast and Robust SAT-Solver. In Proc. of DATE’02,
pages 142–149, 2002.

16. J. F. Groote, J. W. C. Koorn, and S. F. M. van Vlijmen. The safety guaranteeing system at
station Hoorn-Kersenboogerd. In Proc. of Compass’95, pages 57–68. National Institute of
Standards and Technology, 1995.

17. W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-performance, portable implementation
of the MPI message passing interface standard. Parallel Computing, 22(6):789–828, 1996.

18. T. Henzinger. The theory of hybrid automata. In Proc. of LICS’96, pages 278–292. IEEE,
Computer Society Press, 1996.

19. F. Holmén, M. Leucker, and M. Lindström. UppDMC – a distributed model checker for
fragments of the μ-calculus. In L. Brim and M. Leucker, editors, Proc. of PDMC’04, volume
128/3 of Electronic Notes in Computer Science. Elsevier Science Publishers, 2004.

20. M. Lewis, T. Schubert, and B. Becker. Speedup Techniques Utilized in Modern SAT Solvers
– An Analysis in the MIRA Environment. In 8th International Conference on Theory and
Applications of Satisfiability Testing, 2005.

21. N. Lynch. Distributed Algorithms. Kaufmann Publishers, 1996.
22. J. Marques-Silva and K. Sakallah. GRASP: A Search Algorithm for Propositional Satisfia-

bility. IEEE Transactions on Computers, 48(5):506–521, 1999.
23. I. Melatti, R. Palmer, G. Sawaya, Y. Yang, R. M. Kirby, and G. Gopalakrishnan. Parallel and

distributed model checking in Eddy. In Proc. of SPIN’06, pages 108–125, 2006.
24. M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Yang, and S. Malik. Chaff: Engineering an

efficient SAT solver. In Proc. of DAC’01, pages 530–535, 2001.
25. T. Schubert, M. Lewis, and B. Becker. PaMira – a Parallel SAT Solver with Knowledge

Sharing. In 6th International Workshop on Microprocessor Test and Verification, 2005.
26. O. Shtrichman. Accelerating bounded model checking of safety formulas. Formal Methods

in System Design, 24(1):5–24, 2004.
27. C. Sinz, W. Blochinger, and W. Küchlin. PaSAT – Parallel SAT-Checking with Lemma

Exchange: Implementation and Applications. In Proc. of LICS’01, 2001.
28. The VIS Group. VIS: A system for verification and synthesis. In Proc. of CAV’96, volume

1102 of LNCS, pages 428–432. Springer-Verlag, 1996.

Parallel SAT Solving in Bounded Model Checking 315

29. F. D. Torrisi. Modeling and Reach-Set Computation for Analysis and Optimal Control of
Discrete Hybrid Automata. Doctoral dissertation, ETH Zürich, 2003.

30. G. Tseitin. On the complexity of derivations in propositional calculus. In Studies in Con-
structive Mathematics and Mathematical Logics. 1968.

31. VIS Benchmark Suite. http://vlsi.colorado.edu/∼vis.
32. S. A. Wolfman and D. S. Weld. The LPSAT engine & its application to resource planning. In

T. Dean, editor, Proc. of 16th International Joint Conference on Artificial Intelligence, pages
310–315, 1999.

33. L. Zhang, C. Madigan, M. Moskewicz, and S. Malik. Efficient Conflict Driven Learning in
a Boolean Satisfiability Solver. In IEEE/ACM International Conference on Computer-Aided
Design, 2001.

Parallel Algorithms for Finding SCCs
in Implicitly Given Graphs�

Jǐŕı Barnat and Pavel Moravec

Department of Computer Science, Faculty of Informatics
Masaryk University Brno, Czech Republic

Abstract. We examine existing parallel algorithms for detection of str-
ongly connected components and discuss their applicability to the case
when the graph to be decomposed is given implicitly. In particular, we
list individual techniques that parallel algorithms for SCC detection are
assembled from and show how to assemble a new more efficient algorithm
for solving the problem. In the paper we also report on a preliminary
experimental study we did to evaluate the new algorithm.

1 Introduction

The problem of finding strongly connected components (SCCs), known also as
SCC decomposition, is one of the basic graph problems that finds its applications
in many research fields even beyond the scope of computer science. An efficient
algorithmic solution to this problem is due to Tarjan [20] who showed that
given a graph with n vertices and m edges, it is possible to identify and list all
strongly connected components of the graph in O(n + m) time and O(n) space.
Besides Tarjan’s serial algorithm, several parallel algorithms have been designed
to solve the problem. Tarjan’s algorithm (and its variants) strongly rely on the
depth-first search post-ordering of vertices whose computation is known to be P -
complete [19], and thus, difficult to be parallelized. Therefore, parallel algorithms
avoid the depth-first search of the graph and build on different approaches.

A parallel algorithm relying on matrix multiplication was described in [14] and
further improved in [10,1]. The algorithm works in O(log2 n) time in the worst
case, however, to achieve the complexity it requires O(n2.376) parallel proces-
sors. As graphs that we are typically dealing with in practice contain millions
of vertices the algorithm is practically unusable and is only interesting from the
theoretical point of view. Another parallel algorithm for finding SCCs was given
in [12]. Its general idea is to repeatedly pick a vertex of the graph and identify
the component the vertex belongs to using two parallel reachability procedures.
The algorithm proved to be efficient enough in practice, which resulted in sev-
eral theoretical improvements of it [17,15]. The worst time complexity of the
algorithm is O(n · (n + m)), nevertheless, the algorithm exhibits O(m · log n)
expected time [12].
� This work has been partially supported by the Grant Agency of Czech Republic

grant No. 201/06/1338.

L. Brim et al. (Eds.): FMICS and PDMC 2006, LNCS 4346, pp. 316–330, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Parallel Algorithms for Finding SCCs in Implicitly Given Graphs 317

In this paper, we discuss known as well as suggest new techniques used for par-
allel SCC decomposition, and we explore their restrictions if they are applied to
implicitly given graphs. Efficient parallel algorithms for SCC decomposition will
find their application in distributed formal verification tools such as DiVinE [2],
CADP [13], DUPPAAL [4], LiQuor [8], etc. Namely, they will allow the tools to
verify stochastic systems, compute τ -confluence, or verify systems with fairness
constraints or properties given by other than Büchi automata.

The rest of the paper is organized as follows. We recapitulate basic terms
and definitions in Section 2, describe known and new techniques used in parallel
algorithms for solving the problem in Section 3, and list known parallel algo-
rithms along with their pseudo-codes in Section 4. In Section 5 we report on an
experimental study we performed, and in Section 6 we conclude the paper with
several remarks and plans for future work.

2 Preliminaries

We start by brief summary of basic terms and definitions. Let V be a set of
vertices, E ⊆ V × V a set of directed edges, and v0 ∈ V a vertex. We denote by
G = (V, E, v0) a directed graph with initial vertex v0.

Let G = (V, E, v0) be a directed graph. A sequence of edges (u0, u1), (u1, u2),
. . . , (un−1, un) is called a path from vertex u0 to vertex un. We say that vertex
v is reachable from vertex u if there is a path from u to v or u = v. A strongly
connected component (SCC) is a subset C ⊆ V such that for any vertices u, v ∈ C
u is reachable from v. A strongly connected component C is maximal if there
is no strongly connected component C′ such that C � C′. A maximal strongly
connected component C is trivial if C is made of a single vertex c and (c, c) /∈
E. Henceforward, we speak of maximal strongly connected components as of
strongly connected components.

Let WG be the set of all strongly connected components of graph G =
(V, E, v0). A directed graph of strongly connected components of graph G is
defined as SCC(G) = (WG, HG, w0), where w0 is the component that contains
the initial vertex v0, and HG ⊆ WG ×WG is the set of edges between members of
WG. (w1, w2) ∈ HG if there are vertices u1 ∈ w1 and u2 ∈ w2 such that (u1, u2) ∈
E. Note that the graph of strongly connected components of any directed graph
is acyclic.

A graph could be given in many ways. For purpose of this paper (and accord-
ing to our needs) we consider graphs that are given implicitly. A graph is given
implicitly if it is defined by its initial vertex and a function returning immediate
successors of arbitrary vertex. Within the context of implicitly given graphs there
are some restrictions the algorithms have to follow. If an algorithm requires any
piece of information that cannot be concluded from the implicit definition of the
graph, the algorithms have to compute the information first. For example, there
is no way to directly identify immediate predecessors of a given vertex from the
implicit definition of the graph. If the algorithm needs to enumerate immedi-
ate predecessors, then all the predecessors must be computed and stored first.

318 J. Barnat and P. Moravec

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������

TT

LT

LT

T

TT

T

BL−edge vertex.

��
��
��
��

��
��
��
��

Pivot.

Forward reachability.

Backward reachability.

Leading Trivial component.

Terminal Trivial component.

T

TT

LT

Trivial component.

Fig. 1. Component detection, identified subgraphs, and trivial components

Similarly, to number vertices of an implicitly given graph means to enumerate
all its vertices first. For numbering vertices of implicitly given graphs a parallel
procedure was introduced in [13]. Note that vertices of an implicitly given graph
are trivially reachable from the initial vertex.

The reason for dealing with implicitly given graphs comes from practice. In
many cases, the description of rules according to which the graph could be
generated is more space efficient than the enumeration of all vertices and edges.
The difference might be quite significant. For example, in the context of model
checking [9], the implicit definition of the graph is up to exponentially more
succinct compared to the explicit one. This is commonly referred to as the state
explosion problem [9].

3 List of Techniques

Before describing individual parallel algorithms we give the basic principles and
list common techniques that all later given algorithms use. We hope this allow
us to describe the algorithms and analyze their behavior in more compact and
clear way.

Basic Principle

All parallel algorithms we present in Section 4 build on the same technique that
was originally presented in [12]. The graph to be decomposed is split into two
parts. The decomposed part of the graph consisting of already identified compo-
nents, and the not-yet-decomposed part of the graph consisting of vertices that
have not been classified into strongly connected components yet. The basic step
of each algorithm consists of picking a vertex from the not-yet-decomposed part
of the graph, the so called pivot, and identifying the component the selected
vertex belongs to. Having a pivot, the strongly connected component the pivot
belongs to is determined as the intersection of sets of all predecessors and succes-
sors of the given pivot [12]. The structure of all algorithms is then a simple loop

Parallel Algorithms for Finding SCCs in Implicitly Given Graphs 319

in which the basic step is repeated until the not-yet-decomposed part becomes
empty. The basic step is illustrated on the example graph depicted in Figure 1.
Note that the not-yet-decomposed part of the graph is further structured as
explained below.

Reachability Relation

Computation of the reachability relation is the core procedure used in all the
algorithms. The task of the procedure is to identify all vertices that are reachable
from a given vertex. The standard breadth-first or depth-first traversals of the
graph can be employed to do so using O(n) space and O(n + m) time.

The reachability procedures are the first place where parallelism appears in the
algorithms. The parallelization of a reachability procedure became the standard
technique [6,7,21,16]. The so called partition function is used to assign every
vertex of the graph to a single processor that is responsible for exploration of
the vertex. Every processor participating the parallel computation maintains its
own set of already explored vertices and its own list of vertices to be explored. If
a vertex has been explored previously (it is in the set of explored vertices), then
its re-exploration is omitted, otherwise, its immediate successors are generated
and distributed into lists of vertices to be explored according to the partition
function.

The algorithms we describe in the next section use, in addition to the notion
of forward reachability, the notion of backward reachability. The task of a back-
ward reachability procedure is to identify all vertices that a given vertex can be
reached from. The procedure for backward reachability mimics the behavior of
the procedure for the forward reachability except it uses immediate predecessors
instead of immediate successors during graph traversal. While forward reachabil-
ity can be performed using only the implicit definition of the graph, the backward
reachability, as explained above, requires a list of immediate predecessors to be
computed and stored for every vertex first.

Trivial Strongly Connected Components

Considering the basic algorithmic approach to SCC decomposition, the detection
of trivial components is quite inefficient. If the pivot itself is a trivial component,
both forward and backward reachability procedures perform useless work. There
is rather small improvement in omitting the backward reachability procedure
in the case the forward procedure did not hit the pivot, however, the forward
procedure still performs O(n+m) work. Therefore, any technique that prevents
trivial components from becoming pivots has significant impact on practical
performance of the algorithm.

A possible approach for doing so builds on the elimination of leading and
terminal trivial components from the not-yet-decomposed part of the graph. In
particular, every vertex that has zero predecessors must be a trivial component
and as such it can be immediately removed (along with all incident edges) from
the not-yet-decomposed part of the graph. Removing such a vertex may, how-
ever, produce new vertices without predecessors that can be removed in the same

320 J. Barnat and P. Moravec

way. We refer to this recursive elimination technique as to the One-Way-Catch-
Them-Young elimination (OWCTY) [11]. The technique can be applied in the
analogue way also to vertices without successors (Reversed OWCTY). The im-
proved version of the basic parallel algorithm that perform OWCTY elimination
procedures before selection of the pivot was described in [15]. We stress that only
leading and terminal trivial components may be identified in this way. Trivial
components that are neither leading nor terminal may still be chosen as pivots.
The graph depicted in Figure 1 contains all three types of trivial components:
leading trivial components (LT), terminal trivial components (TT), and trivial
components that are neither leading nor terminal (T).

Regarding implicitly given graphs the OWCTY elimination techniques suffer
from the difficulty of identifying vertices with zero predecessors or zero succes-
sors. Basically, a complete reachability of the not-yet-decomposed part of the
graph has to be performed to list those vertices. This reachability does not in-
crease the theoretical complexity, however, it may play significant role in the
practical performance of the algorithm.

Finally, let us mention that in many cases trivial components of the graph
are of a little interest. Therefore, it make sense to save running time by avoiding
their explicit enumeration that can be done using a single additional reachability
procedure.

Pivot Selection

Pivot selection plays a significant role in the complexity of the algorithm. Imag-
ine we always pick a pivot belonging to a component that has no descendant
components in the component graph of the not-yet-decomposed part. Due to the
acyclicity of the component graph such a component always exists. Having such
a pivot all vertices belonging to the corresponding component can be identified
using only a single forward reachability initiated at the pivot and restricted to
the not-yet-decomposed part of the graph. Decomposing the graph to SCCs in
this manner results in a linear time procedure. Unfortunately, to pick pivots
so that the condition above is satisfied means to pick pivots in the depth-first
search post-ordering, which is, as stated in the introduction, difficult to be done
in parallel. Since the optimal pivot selection is difficult, pivots are typically se-
lected randomly. A random pivot selection leads to O(m · log n) expected time
as claimed in [12].

In the explicit case, we can presuppose that vertices are numbered. Therefore,
picking a random pivot corresponds to the generation of a random number.
However, the problem occurs if a pivot has to be selected among vertices of the
not-yet-decomposed part of the graph. As we are not aware of any O(1) time
and O(1) space technique for a single pivot selection, we suggest a technique
whose complexity is O(n) space and O(n) time if time and space complexity
are summed for all pivot selection procedures called within a single run of the
algorithm. The technique is applicable to implicitly given graphs as well. First,
each participating processor enqueues newly discovered vertices in a local queue
when doing the very first forward reachability of the graph. Then, a new pivot

Parallel Algorithms for Finding SCCs in Implicitly Given Graphs 321

������

������
���
���
���
���

���
���
���
���

������

MP,MS

8,−

6,6

−,7

−,6

6,−
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

������
������
������
������

������
������
������
������

�������
�������
�������
�������

�������
�������
�������
�������

����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������

���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������

02 7 8

5 6 34

1

Fig. 2. Subgraphs identified with maximal predecessors (MP) and maximal succes-
sors (MS) if the propagations of MPs and MSs are initiated at pivot vertex

can be selected among the heads of the local queues. However, if the vertex on
the head of a local queue belongs to the decomposed part of the graph, it is
dequeued and the next head is considered to be a candidate for pivot selection.
Moreover, in the case of implicitly given graphs, the procedure organizing vertices
into local queues can be combined with the procedure computing the immediate
predecessors of vertices producing thus no overhead at all.

As we are typically not interested in trivial components, we suggest a com-
pletely new improvement in pivot selection. The idea is to prevent some trivial
strongly connected components from being selected as pivots. We achieve this
with the definition of the so called candidate set, i.e. the set of vertices among
which pivots are chosen. Our intention is to terminate the algorithm once all can-
didate pivots have been selected and the corresponding components identified. If
the candidate set contains initially at least one vertex for every non-trivial com-
ponent of the graph, it must be the case that after the algorithm terminates the
remaining not-yet-decomposed part of the graph is made of trivial components
only. Generally, the smaller the candidate set is, the fewer trivial components
are chosen as pivots. What we use for computing the candidate set is the con-
cept of the so called back-level edge [3]. It is known that every cycle, and thus
every non-trivial strongly connected component, contains at least one back-level
edge, which is an edge that leads from a vertex with some distance from the
initial vertex of the graph to a vertex with equal or smaller distance from the
initial vertex of the graph. Let us call the destination vertex of a back-level edge
a BL-edge vertex. We suggest the candidate set to be the set of BL-edge ver-
tices. Note that BL-edge vertices can be computed during the initial reachability
procedure using the level-synchronized breadth-first search of the graph [3]. As
depicted in the graph in Figure 1, some trivial components can never become
pivots considering BL-edge vertices as pivot candidates.

Independent Subgraphs

In every iteration of the outermost loop of the basic algorithm the not-yet-
decomposed part of the graph is split into several disjoint subgraphs. Let alone
the identified component, these are the subgraph induced by vertices out of the
component but explored during the forward reachability, subgraph induced by
vertices out of the component but explored during the backward reachability,

322 J. Barnat and P. Moravec

���������������
���������������
���������������

���������������
���������������
���������������

���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������

��
��
��
��

��
��
��

��
��
��

where OWCTY is stopped

where FWD is stopped

OWCTY−eliminated vertices

Identified subgraphs

T T

T

T TTT

T

T T

T

T TTT

T

Fig. 3. Two steps of OWCTY-BWD-FWD independent subgraph identification

and subgraph induced by vertices that were not explored in that iteration at
all. See example in Figure 1. An important observation [12] is that decompos-
ing one of these subgraphs into strongly connected components is completely
independent of the decomposition of other subgraphs. Therefore, the subgraphs
may be viewed as if they were three independent graphs for the next step of
the algorithm, which introduces two major improvements. First, three indepen-
dent decomposition procedures may be performed in parallel increasing thus the
amount of parallelism, second, every independent procedure may be restricted to
explore vertices within the subgraph avoiding thus useless exploration of vertices
out of the subgraph. Let us call the number of independent subgraphs produced
in every iteration of the outermost loop (excluding the identified component)
the degree of parallelism of the algorithm. Note that the number of the indepen-
dent subgraphs grows exponentially with the number of iterations. Thus, if p is
the number of available processors and d is the degree of parallelism, then after
logd(p) iterations the number of independent subgraphs may exceed the number
of available processors.

In the case of implicitly given graphs, vertices of a given subgraph are parti-
tioned among processors according to the partition function. Therefore, all the
single decomposition procedures share all processors participating the computa-
tion. Unfortunately, this requires to perform as many independent distributed
termination detection procedures as there are single decomposition procedures
running in parallel, which is quite technically involved and may actually be a
reason for preventing individual decomposition procedures from being executed
concurrently in practice. Also note that considering independent subgraphs,
efficient pivot selection becomes complicated. In particular, we are not aware

Parallel Algorithms for Finding SCCs in Implicitly Given Graphs 323

of any technique that could be used for selection of a random pivot from a sub-
graph without actually performing the whole subgraph exploration first. Also
identifying leading and terminal trivial components in a subgraph results in a
reachability procedure performed on the subgraph before the subgraph is de-
composed. That is why we did not considered the leading and terminal trivial
components elimination in all of the algorithms.

There is a technique that allows to identify more than three subgraphs in a
single iteration [17]. Suppose the vertices of the graph are arbitrarily linearly
ordered. Then, the maximal preceding vertex and maximal succeeding vertex
can be computed for any vertex of the graph using an O(n · m) procedure [5].
If the forward and backward reachability procedures are extended to propagate
maximal preceding and succeeding vertices, respectively, new subgraphs can be
identified according to the maximal predecessors and successors associated to
vertices in the subgraph. All vertices of the strongly connected component that
the selected pivot belongs to, must have the same maximal predecessor and suc-
cessor. Due to the pivot selection the maximal predecessors are computed only in
the subgraph induced by vertices reachable from the pivot (forward reachability)
while the maximal successors are computed for vertices that can reach the pivot
(backward reachability). A possible result after a single iteration on a subgraph
is depicted in Figure 2. In the original approach described in [17], the maximal
predecessors and successors were computed over the complete graph. Regarding
the number of identified components none of the approaches is better.

In the following we suggest a completely new technique to identify independent
subgraphs in O(n + m) time. The technique employs OWCTY elimination tech-
nique succeeded with backward and forward reachability procedures. A graph
and two steps of the new technique performed on the graph are depicted in
Figure 3. The OWCTY elimination procedure, if initiated from the vertex with
zero predecessors, eliminates all leading trivial components and visits some ver-
tices of all components immediately reachable from the eliminated trivial ones.
Visited but not eliminated vertices are shown as vertices with a little cross. A
backward reachability performed from vertices with the little cross identifies one
independent subgraph. Note that this subgraph contains exactly all strongly
connected components immediately reachable from the eliminated trivial com-
ponents. Having the subgraph a forward reachability procedure restricted to the
subgraph is performed from the vertices with little cross. This procedure stops
on vertices outside the subgraph but immediately reachable from the subgraph
(vertices with the little circle). Among these vertices there might be some that
have predecessors only in the previously identified subgraph. These vertices must
be trivial components, and therefore, they can be used as vertices to start the
next OWCTY elimination procedure from. Figure 3 shows two successive steps
of the subgraph identifying procedure OWCTY-BWD-FWD. We stress that
the procedure may detect many independent subgraphs while performing only
O(n + m) work.

324 J. Barnat and P. Moravec

4 Algorithms

Having described all the techniques, we can now present individual algorithms.
All pseudo-codes listed below describe the core parts of the algorithms. We
neither list the initial reachability procedure that must be performed in order to
compute the predecessor function in the implicit case, nor we list many technical
details related to implementation, parallelization, distribution, etc.

F-B

The F-B algorithm [12] is the basic algorithm that all other presented algorithms
build on. In the following pseudo-code, we describe a single procedure that is
initially called for the complete set of vertices of the graph to be decomposed
and then called recursively for identified independent subgraphs. A pivot is se-
lected using procedure PIVOT and the set of vertices reachable in forward and
backward manner are computed using parallel reachability procedures FWD
and BWD. Both reachability procedures have two parameters. Besides the ver-
tex or vertices to start from, each reachability procedure is also given a set of
vertices that its exploration is limited to. This ensures that given a subgraph,
the procedure will explore only immediate successors or predecessor of vertices
within the subgraph. The sets of vertices as computed by forward and backward
reachability procedures are referred to as F and B, respectively. Having com-
puted both sets F and B, a new component is identified as the intersection of F
and B, and recursive calls for three new subgraphs are made. Note that if it is
necessary, the procedure is able to select pivots among given set of candidates.

1 proc F-B(V , candidates)
2 if (V �= ∅)
3 then p := PIVOT(V ∩ candidates)
4 F := FWD(p, V)
5 B := BWD(p, V)
6 SCCs := SCCs ∪ {F ∩ B}
7 in parallel do
8 F-B(F � B, candidates)
9 F-B(B � F, candidates)

10 F-B(V � (F ∪ B), candidates)
11 od
12 fi
13 end

In our experimental study we also considered a slightly modified version of the
basic algorithm. In particular, we implemented a version in which the backward
reachability procedure was restricted to the vertices discovered by the preceding
forward reachability procedure, i.e. line 5 in the pseudo-code is changed to

B := BWD(p, F).

Parallel Algorithms for Finding SCCs in Implicitly Given Graphs 325

This modification decrease the degree of parallelism, but produce a procedure
where exploration of some vertices is omitted compared to the original algo-
rithm. One could tend to see this technique as an improvement, however, our
experiments proved that neither of the versions was significantly better then the
other. Our explanation for the lack of improvement in some cases is that the
subgraphs identified as (V � (F ∪ B)) become actually larger causing thus more
work to be done in subsequent recursive calls to the procedure.

MP-MS

Algorithm MP-MS [17] extends the previous algorithm with the maximal pre-
decessors and maximal successors concept. Compared to algorithm F-B, the im-
provement is in the subgraph detection, see Section 3. In order to compute the
maximal predecessors and successors, parallel procedures FWD and BWD have
to be replaced with new parallel procedures FWD-MAXPRED and BWD-
MAXSUCC, respectively. Besides computing the same reachability relation as
procedures FWD and BWD, the new procedures also identify subgraphs ac-
cording to the maximality of predecessors or successor and return lists of those
vertices whose order is used to refer to a subgraph. These SuccList and PredList
are then used to perform parallel recursive calls on identified subgraphs. See the
pseudo-code below. Recall that the time complexity of both new procedures is
O(n · m), which is worse than if simple reachability procedures are used. How-
ever, the bad complexity is paid off with the degree of parallelism being much
higher compared to the degree of parallelism of algorithm F-B. Finally, let us
mention that also algorithm MP-MS is capable of selecting pivots among given
set of candidates.

1 proc MP-MS(V , candidates)
2 if (V �= ∅)
3 then p := PIVOT(V ∩ candidates)
4 F, PredList := FWD-MAXPRED(p, V)
5 B, SuccList := BWD-MAXSUCC(p, V)
6 SCCs := SCCs ∪ {F ∩ B}
7 in parallel do
8 MP-MS(V � (F ∪ B), candidates)
9 MP-MS(F[k, −], candidates) foreach k ∈ PredList

10 MP-MS(B[−, k], candidates) foreach k ∈ SuccList
11 od
12 fi
13 end

O-B-F

Algorithm O-B-F is completely a new algorithm we suggest in this paper. The
core idea of the algorithm is to partition the component graph to the so called O-
B-F levels and then call any algorithm (F-B in our case) to decompose individual
levels of the component graph into strongly connected components. Recall that

326 J. Barnat and P. Moravec

the component graph can be partitioned to those levels in linear time using the
new technique described in Section 3.

The procedure O-B-F performs the detection of levels in the level by level
manner. It is started with the complete set of vertices as the graph to be decom-
posed, and with the initial vertex as the vertex to start the exploration from.
In every single call of the procedure one O-B-F level is detected. The set of
remaining vertices, denoted with V , is appropriately shrunk, candidates for ini-
tial vertices of V (the so called Seeds) are computed, and two procedures are
initiated in parallel. First, a procedure to decompose the subgraph identified
with the O-B-F level, second, procedure O-B-F to identify other levels in the
remaining set V . Recursive calls to procedure O-B-F terminates when all the
levels are recognized and the set of remaining vertices is empty.

Every single O-B-F level is detected using standard procedures. First of all,
leading trivial components of the remaining graph are eliminated using proce-
dure OWCTY. The procedure computes the set of leading trivial components
(Eliminated) and the set of vertices on which the elimination process stopped
(Reached). Eliminated vertices are removed from set V of remaining vertices
and the standard backward reachability procedure is performed from vertices
in Reached and restricted to vertices in V . As the backward procedure is re-
stricted to V , it computes exactly vertices belonging to the top most level in
the component graph of V . These vertices (denoted with B) are removed from
set V of remaining vertices and the decomposition of the level is initiated as
an independent parallel procedure. Note that the set of potential pivots can be
restricted to vertices in Reached because every strongly connected component
belonging to the level must contain at least one vertex from Reached. A for-
ward reachability (FWD-SEEDS) is also performed on vertices in B in order
to identify vertices immediately below the current level, which are exactly ver-
tices that become Seeds for the next call to procedure OWCTY in the next
recursive call of the procedure O-B-F. Note that vertices in Seeds that belong
to non-trivial strongly connected components are moved directly to set Reached
within procedure OWCTY.

1 proc O-B-F(V , Seeds)
2 if (V �= ∅)
3 then Eliminated, Reached = OWCTY(Seeds, V)
4 V := V � Eliminated
5 B := BWD(Reached, V)
6 V := V � {B}
7 F, Seeds := FWD-SEEDS(Reached, B)
8 in parallel do
9 F-B(B, B)

10 O-B-F(V , Seeds)
11 od
12 fi
13 end

Parallel Algorithms for Finding SCCs in Implicitly Given Graphs 327

5 Experimental Evaluation

We have implemented and experimentally evaluated quite a few algorithms de-
scribed in this paper. The algorithms were implemented using the DiVinE Li-
brary [2] as the library providing support for parallel and distributed genera-
tion of implicitly given graphs. The common library used gives approximately
the same level of enhancement of all implementations, thus, the experimental
comparison is quite fair. All experiments were conducted on a network of ten
Intel Pentium 4 2.6 GHz workstations each having 1 GB of RAM and 100Mbps
switched Ethernet connection.

The graphs we use to evaluate our implementations come from DiVinE Li-
brary distribution. They are listed in Table 1 along with their important char-
acteristics, namely, the number of vertices (Vertices), number of edges (Edges),
numbers of trivial and non-trivial strongly connected components (T. SCCs,
N. SCCs), and the time needed for sequential decomposition into strongly con-
nected components using Tarjan’s algorithm (Tarjan). Value n.a. means that
the sequential decomposition algorithm exceeded available amount of RAM. For
the purpose of the distributed experiments, all the graphs were distributed using
the default hash-based partition function implemented in DiVinE Library.

We implemented and experimentally evaluated six different algorithms. Algo-
rithms F-B, MP-MS, and O-B-F directly correspond to algorithms presented
in Section 4. Algorithm F-RB is the modified version of algorithm F-B, i.e.
the version where the backward reachability procedure is restricted to vertices
explored during the preceding forward reachability procedure. If the name of the
algorithm is extended with suffix (B), then the algorithm was initiated consid-
ering BL-edge vertices as pivot candidates. We have not implemented the mod-
ification of algorithms F-B and MP-MS that includes elimination of leading
and terminating trivial components on the given subgraph before the subgraph
is decomposed [15,18]. The reason is that we are not aware of any technique that
would identify vertices with zero predecessors or zero successors in the given sub-
graph without actually exploring the subgraph first, which makes the approach
inefficient in the case of implicitly given graphs.

All our implementations explicitly avoid concurrent performance of the de-
composition procedures on independent subgraphs. In particular, if an indepen-
dent decomposition procedure is about to be initiated, its assignment is stored
and its initiation postponed. There are several reasons for this. First, the number
of processors we have at our hand is very limited. Therefore, parallel procedures
would very soon produce a non-trivial overhead caused by switching the context
of CPUs depreciating thus the measured values. Second, as already mentioned
in Section 3, appropriate termination detection becomes technically involved if
independent parallel procedures share CPUs. Moreover, pivot selection within
the given subgraph would generally introduce additional reachability procedure
performed on every discovered independent subgraph if the subgraphs should
be decomposed in parallel. And third, as the algorithms perform parallel reach-
ability procedures most of the time, we have not observed idling of individual
workstations. Therefore, we believe that the parallelism of the decomposition

328 J. Barnat and P. Moravec

Table 1. Summary of graphs

Name Vertices Edges T. SCCs N. SCCs Tarjan
DrivingPhilsK3 6307240 12950475 16 1 4:51

DrivingPhilsK3 4 10301529 24055321 3170354 2680 10:27
Elevator12 2 8591334 89419176 2004966 2 13:21

Lifts6 16364845 50088312 7231789 8052 n.a.
LookUpProc10 3 16562363 33464135 1603283 2 n.a.

MutBak4 9384762 31630895 1881088 15 30:07
MutMcs4 1241948 4456310 9718 39 33
Phils14 1 9565935 124357142 531442 28 n.a.
Pet6err 1060048 6656522 208436 25075 4:29

Rether9 2 7663993 9624242 81831 5 16:38
Train8 2 11740214 37389502 5273750 50858 3:10:44

Table 2. Runtimes (hours:minutes:seconds)

Graph F-B F-B (B) F-RB (B) MP-MS MP-MS (B) O-B-F
DrivingPhilsK3 2:13 1:58 2:08 17:20 22:43 1:57

DrivingPhilsK3 4 n.a. 3:41:37 n.a. n.a. n.a. 4:30:36
Elevator12 2 n.a. n.a. n.a. n.a. n.a. 9:06

Lifts6 n.a. 5:15:46 n.a. n.a. n.a. 5:47:44
LookUpProc10 3 n.a. n.a. n.a. n.a. n.a. 16:36

MutBak4 n.a. 2:31:31 1:42:31 n.a. n.a. 1:29:09
MutMcs4 7:32 37 23 26:21 34:32 23
Phils14 1 2:42:03 18:36 18:30 n.a. n.a. 21:31
Pet6err n.a. n.a. n.a. n.a. n.a. 4:53:47

Rether9 2 1:13:01 27:57 8:23 4:13:29 2:14:05 17:11
Train8 2 n.a. 2:09:54 1:52:21 n.a. n.a. n.a.

procedures would bring nothing but increased complexity of the implementa-
tions. Actual runtimes needed by all the algorithms to decompose the graphs
are reported in Table 2. Value n.a. denotes now that the runtime of the algo-
rithm exceeded 10 hours time limit.

We find the experimental results very interesting. First, we were slightly sur-
prised with the practical inefficiency of the algorithm based on maximal pre-
decessors and maximal successors. Its performance is far beyond performance
of other algorithms proving that the decomposition into many subgraphs is not
worth unless it is done in O(n+m) time. Second, quite interesting result is that
the restriction of the set of vertices that can be selected for pivots play significant
role in practice. Note that in the case of algorithm F-B, the BL-edge vertices
yielded roughly speed up of to ten. In the case of algorithm MP-MS they did
not generally help at all, for which we blame the procedures with O(n · m) time
complexity whose bad performance cut off any improvements made in pivot
selection. Third, algorithm O-B-F proved to have big potential as it was the
fastest algorithm in many cases, and sometimes even the only algorithm that was

Parallel Algorithms for Finding SCCs in Implicitly Given Graphs 329

able to perform the decomposition within the given time limit. Finally, let us
mention that according to our preliminary experiments, there were cases where
the parallel algorithms if executed on ten workstations, outperformed even the
optimal Tarjan’s algorithm.

6 Conclusion and Future Work

In this paper we tried to list and evaluate all known techniques used in paral-
lel algorithms for decomposition of implicitly given graphs into strongly con-
nected components, and compare the parallel algorithms that exploit them.
We also introduced two completely new techniques that the parallel algorithms
can employ. In particular, we suggested how BL-edge vertices can be profited
from if they are used as pivot candidates, and how the graph can be decom-
posed into subgraphs preserving SCCs using linear time and parallel technique
OWCTY-BWD-FWD. Both newly suggested techniques have shown their su-
perior strength in our experimental study.

We would especially like to emphasize that the newly suggested procedure shows
not only practical usefulness, but also a theoretically interesting behavior. In par-
ticular, it may be proved that graphs whose components exhibit a chain-like struc-
ture, can be decomposed in parallel in the optimal linear time. Generally, using the
technique we are able to give a parallel algorithm for solving the SCC decomposi-
tion problem working in O(h · (n + m)) time, where h is the maximal number of
strongly connected components on an acyclic path in a single O-B-F level.

Although, the preliminary results are encouraging, we are well aware of the
immaturity of our experimental evaluation. We intend to perform thorough ex-
perimental study on larger set of inputs including algorithms with elimination
of leading and terminal trivial components in the future. We also intend to im-
prove implementations of the algorithms, in particularly, we would like to come
up with a reasonable pivot selection procedure that would allow us to implement
and experimentally evaluate virtually concurrent decomposition of the indepen-
dent subgraphs. Finally, we intend to incorporate the best algorithms in the
distributed verification environment DiVinE, so that the tool is capable of dis-
tributed and parallel verification of stochastic systems as well as verification of
properties given by other than Büchi automata.

Let us also mention that we have tried to come up with some algorithms
that avoid backward reachability procedure being thus perfectly suitable for the
decomposition of implicitly given graphs. However, all our attempts resulted in
algorithms whose practical performance was quite poor and discouraging.

References

1. Nancy Amato. Improved processor bounds for parallel algorithms for weighted
directed graphs. Inf. Process. Lett., 45(3):147–152, 1993.

2. J. Barnat, L. Brim, I. Černá, P. Moravec, P. Ročkai, and P. Šimeček. Divine – a
tool for distributed verification. To appear in proceedings of CAV 2006.

330 J. Barnat and P. Moravec

3. J. Barnat, L. Brim, and J. Chaloupka. Parallel Breadth-First Search LTL Model-
Checking. In 18th IEEE International Conference on Automated Software Engi-
neering (ASE’03), pages 106–115. IEEE Computer Society, Oct. 2003.

4. G. Behrmann. A performance study of distributed timed automata reachability
analysis. In Proc. Workshop on Parallel and Distributed Model Checking, volume 68
of Electronic Notes in Theoretical Computer Science. Elsevier Science Publishers,
2002.

5. L. Brim, I. Černá, P. Moravec, and J. Šimša. Accepting Predecessors are Better
than Back Edges in Distributed LTL Model-Checking. In 5th International Con-
ference on Formal Methods in Computer-Aided Design (FMCAD’04), volume 3312
of LNCS, pages 352–366. Springer-Verlag, 2004.

6. S. Caselli, G. Conte, and P. Marenzoni. Parallel state space exploration for GSPN
models. In G. De Michelis and M. Diaz, editors, Applications and Theory of Petri
Nets 1995, volume 935 of LNCS, pages 181–200. Springer-Verlag, 1995.

7. G. Ciardo, J. Gluckman, and D.M. Nicol. Distributed State Space Generation of
Discrete-State Stochastic Models. INFORMS Journal of Computing, 1997.

8. Frank Ciesinski and Christel Baier. LiQuor: A tool for Qualitative and Quantitative
Linear Time analysis of Reactive Systems, 2006.

9. E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT Press,
Cambridge, Massachusetts, 1999.

10. Richard Cole and Uzi Vishkin. Faster optimal parallel prefix sums and list ranking.
Inf. Comput., 81(3):334–352, 1989.

11. K. Fisler, R. Fraer, G. Kamhi, M. Y. Vardi, and Z. Yang. Is there a best symbolic
cycle-detection algorithm? In Proc. Tools and Algorithms for Construction and
Analysis of Systems, volume 2031 of LNCS, pages 420–434. Springer, 2001.

12. Lisa K. Fleischer, Bruce Hendrickson, and Ali Pinar. On identifying strongly con-
nected components in parallel. Lecture Notes in Computer Science, 1800:505–511,
2000.

13. H. Garavel, R. Mateescu, and I.M Smarandache. Parallel State Space Construction
for Model-Checking. In Proceedings of the 8th International SPIN Workshop on
Model Checking of Software (SPIN’01), volume 2057 of LNCS, pages 200–216.
Springer-Verlag, 2001.

14. Hillel Gazit and Gary L. Miller. An improved parallel algorithm that computes
the bfs numbering of a directed graph. Inf. Process. Lett., 28(2):61–65, 1988.

15. William McLendon III, Bruce Hendrickson, Steven J. Plimpton, and Lawrence
Rauchwerger. Finding strongly connected components in distributed graphs. J.
Parallel Distrib. Comput., 65(8):901–910, 2005.

16. F. Lerda and R. Sisto. Distributed-memory model checking with SPIN. In Pro-
ceedings of the 6th International SPIN Workshop on Model Checking of Software
(SPIN’99), volume 1680 of LNCS. Springer-Verlag, 1999.

17. S. Orzan. On Distributed Verification and Verified Distribution. PhD thesis, Free
University of Amsterdam, 2004.

18. S.M. Orzan and J.C. van de Pol. Detecting strongly connected components in large
distributed state spaces. Technical Report SEN-E0501, CWI, 2005.

19. John H. Reif. Depth-first search is inherently sequential. Information Processing
Letters, 20(5):229–234, June 1985.

20. R. Tarjan. Depth first search and linear graph algorithms. SIAM Journal on
computing, pages 146–160, 1972.

21. U.Stern and D. L. Dill. Parallelizing the murϕ verifier. In O. Grumberg, editor,
Proceedings of Computer Aided Verification (CAV ’97), volume 1254 of LNCS,
pages 256–267. Springer-Verlag, 1997.

Can Saturation Be Parallelised?�

On the Parallelisation of a Symbolic State-Space
Generator

Jonathan Ezekiel1, Gerald Lüttgen1, and Radu Siminiceanu2

1 University of York, York, YO10 5DD, UK
{jezekiel,luettgen}@cs.york.ac.uk

2 National Institute of Aerospace, Hampton VA 23666, USA
radu@nianet.org

Abstract. Symbolic state-space generators are notoriously hard to par-
allelise. However, the Saturation algorithm implemented in the SMART
verification tool differs from other sequential symbolic state-space gen-
erators in that it exploits the locality of firing events in asynchronous
system models.

This paper explores whether event locality can be utilised to effi-
ciently parallelise Saturation on shared-memory architectures. Concep-
tually, we propose to parallelise the firing of events within a decision
diagram node, which is technically realised via a thread pool. We discuss
the challenges involved in our parallel design and conduct experimental
studies on its prototypical implementation. On a dual-processor dual-
core PC, our studies show speed-ups for several example models, e.g., of
up to 50% for a Kanban model, when compared to running our algorithm
only on a single core.

1 Introduction

Automated verification, such as temporal-logic model checking [6], relies on effi-
cient algorithms for computing state spaces of complex system models. To avoid
the well-known state-space explosion problem, symbolic algorithms working on
decision diagrams, usually BDDs, have proved successful in practice [5, 14].
Several efforts have been made to implement these algorithms on parallel com-
puter platforms, most notably on networks of workstations and on PC clus-
ters [8, 9, 10, 15, 16]. The efforts range from simple approaches that essentially
implement BDDs as two-tiered hash tables [15, 16] to sophisticated approaches
relying on slicing BDDs [9], and techniques for workstealing [8]. However, the
resulting implementations show only very limited speed-ups, which is not sur-
prising given that state-space generation is essentially an irregular task.

Saturation [4], as implemented in the verification tool SMART [3], is a sym-
bolic state-space generation algorithm with unique features (cf. Sec. 2). It is
intended for asynchronous system models that are based on an interleaving se-
mantics, and exploits the local effect of firing events on state vectors by locally
� Research funding was provided by the EPSRC under grant GR/S86211/01.

L. Brim et al. (Eds.): FMICS and PDMC 2006, LNCS 4346, pp. 331–346, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

332 J. Ezekiel, G. Lüttgen, and R. Siminiceanu

manipulating MDDs [12], which are a generalised version of BDDs. Saturation
has proved orders of magnitude more time- and memory-efficient than other
symbolic algorithms [4], including the one implemented in the popular NuSMV
model checker [5]. Hence, the question arises whether the locality of events can
also be utilised for parallelising Saturation in order to achieve further speed-
ups. Previous approaches to parallelising Saturation have focused on data par-
allelism [2, 1], but not on parallelising the algorithm itself.

This paper investigates the parallelisability of the Saturation algorithm for
shared-memory architectures, such as multi-processor, multi-core PCs. At first
sight, this is a challenging endeavor since Saturation relies on relatively light-
weight operations for processing or ”saturating” MDD nodes. Indeed, the algo-
rithm’s key operation is firing a single event from a given MDD node. However,
this operation is not an entity that can easily be parallelised, since newly gen-
erated nodes are saturated themselves before the saturation of the node under
consideration continues. In this sense, Saturation is a greedy algorithm.

Almost two years of studies have given us a detailed understanding of what is
needed to efficiently parallelise the firing of events within Saturation (cf. Sec. 3).
Key to the algorithm is how to manage the dependency of tasks without forcing
computation threads to frequently idle. To this end, we propose a task queue for
storing tasks that need to be processed, from which available compute nodes can
pick jobs. However, letting the operating system manage tasks is very costly, due
to the overheads involved when creating threads. Consequently, we implement
our own thread pool that minimises these overheads. Another challenge is how to
group firings of events such that our tasks, while still being lightweight, become
sizable. Our solution here is to consider firing several events for a given node
within the same task.

We have implemented our algorithm on a PC with two dual core Intel proces-
sors. Our experimental studies (cf. Sec. 4) show speed-ups of up to 50% when
running the parallel algorithm on four processors instead of one, for large sys-
tems with densely connected MDD nodes, such as a Kanban model. Indeed,
the algorithm’s efficiency depends on the studied models, and improvements
over the optimised sequential version of Saturation have proved to be hard to
achieve. We carefully justify our results with the help of Intel Threading Tools
[www.intel.com/software/products/threading/], which provides valuable in-
sights into the locking behavior and processor idle times of our algorithm. The
analysis also shows that our parallelisation is quite efficient in terms of utilising
computation resources. The answer to the question posed in this paper’s title is
”yes”, however speed-ups over the sequential algorithm are model dependent.

2 Saturation

The introduction of Binary Decision Diagrams (BDDs) [6] has revolutionised
the field of model checking. BDDs offer a compact encoding for large sets of
states when performing the next-state computation in a single, symbolic opera-
tion. However, despite the clear advantage over explicit exploration algorithms,

www.intel.com/software/products/threading/

Can Saturation Be Parallelised? 333

the traditional monolithic BDD approach has been inherently a breadth-first
search (BFS) strategy, or a variant of it [14]. For complex systems, however,
the symbolic BFS algorithm usually suffers from an excessive peak memory con-
sumption, thus failing to build the entire state space even when the final BDD
is much smaller than the intermediate peak.

The Saturation algorithm [4] is radically different from its symbolic predeces-
sors. It consists of a series of small, nested fixed point operations that are guided
by the current shape of the decision diagram, with the goal of systematically
saturating decision diagram nodes in a bottom-up fashion. The building block of
this strategy is the firing of an individual event in an individual node, which en-
codes a subset of states, in contrast to computing the entire next-state function
on the entire current set of states. This finer-grain decomposition of symbolic
operations is more flexible, by allowing more efficient firing orders, while ex-
ploiting the event locality property, which is inherently present in concurrent,
asynchronous systems. In our setting, the system is structured if it consists of
a collection of subsystems, such that the global system state can be written as
a vector of local states and the effect of an event on the system state can be
expressed as the composition of the local effects of the event on each subsystem.
For structured systems, an encoding of sets of states with Multi-way Decision
Diagrams (MDDs) is more natural, for several reasons. Firstly, the one-to-one
correspondence between a state variable and the level in the MDD is always ap-
parent. Secondly, MDD nodes allow one to exploit the key operation of in-place
updates [4] which accelerates the exploration.

A decision diagram node is said to be saturated if it encodes a local fixed point
with respect to the subset of events that affect its level and the levels below. The
global fixed point strategy is therefore chaotic, which can be shown to be correct
as long as the firing order of events is fair, i.e., each event is considered often
enough. To allow chaotic exploration, the system’s model requires a disjunctively
partitioned transition relation and must obey the interleaving semantics when
firing events.

In contrast to traditional, BFS-oriented approaches, Saturation is extremely
efficient. It performs lightweight decision diagram manipulations in contrast to
the heavyweight, monolithic image computation of its symbolic counterparts.
The greedy strategy of saturating every node immediately upon its creation, by
pre-empting the undergoing event firing operation, results in a series of recursive,
preemptive firings, which leads to a reduction of the peak MDD size. The intu-
ition behind this is that only saturated nodes can be part of the final state-space
representation. Also, once a node is saturated, it does not need to be considered
for further exploration. The bottom-up order of saturating nodes ensures that
all descendants are already saturated when a node is considered for saturation.
Since the complexity of symbolic algorithms is closely related to the number
of nodes in the decision diagram as opposed to the number of encoded states,
Saturation is significantly more efficient than BFS. It is up to several orders of
magnitude faster and memory efficient on classic asynchronous systems [4].

334 J. Ezekiel, G. Lüttgen, and R. Siminiceanu

Paradoxically, the properties of Saturation make its efficient parallelisation
extremely difficult. Given the doubly-recursive dependencies of the saturation
and event firing routines, the algorithm is sequential by nature and heavily op-
timised, leaving little room for further improvements.

3 Parallel Saturation

State-space generation algorithms are difficult to parallelise due to the charac-
teristics of the process. Tasks such as applying the next state function are irreg-
ularly sized, are dependent upon each other and have to synchronise frequently.
These characteristics can introduce high parallel overheads. Irregular tasks cause
load-imbalance, and dependencies between tasks compound the problem. While
there are a number of techniques to load-balance irregular tasks, frequent syn-
chronisation can only be avoided by making tasks as large and independent as
possible. We exploit event locality to achieve this. Creating parallel tasks from
event firings allows parts of the MDD to be constructed independently since
subsequent event firings are local to the resultant sub-MDD.

While we can exploit event locality to create independent tasks, local events
often cannot be parallelised due to their efficiency. On the shared memory ar-
chitectures we investigated, the cost of creating a parallel event to perform an
in-place-update outweighs the cost of performing it. On a SPARC Solaris shared
memory machine we approximated the cost of an in-place update as 1200ns,
compared to 90000ns for creating a thread and 8000ns for allocating a task to
an existing thread. An in-place update can also occur when an event firing fully
utilises previous work that has been cached. The cost of retrieving information
from a cache is only 900ns. We therefore group event firings together and only
consider those events that do not result in in-place updates for parallel tasks.

To address irregularity we introduce a task queue to which parallel tasks can
be added, and to load-balance the tasks we utilise a thread pool where a thread
is mapped 1-to-1 to a processor core. An available thread picks a task from the
queue and performs the work associated with it. However, fitting the Saturation
algorithm into this load-balancing structure is difficult due to its mutually recur-
sive nature. In particular, in order to prevent threads from suspending we have
to eliminate sequential waits on the result of a parallel event firing. We achieve
this by introducing upward arcs into the MDD structure, which directly replace
recursive function calls waiting for work to complete. Instead, the function calls
continue when parallel work is pending leaving the upward arcs to represent fu-
ture updates on a node. Upward arcs allow a task that was created by firing an
event on a node to continue the work on the node when it completes. Each node
must keep track of the number of tasks operating on it in order to determine
when it is saturated. We also allow work requests to be cached before they have
been carried out in order to avoid duplicate work in parallel.

The result of mapping our ideas into code is shown in Fig. 1, with support-
ing functions described in Fig. 2. The code extends the one from the sequential
version of Saturation [4], parallel code is highlighted in Fig. 1, dark-shaded code

Can Saturation Be Parallelised? 335

Saturate(in k:lvl , p:idx)

Update 〈k.p〉, not in UT [k], in–place, to encode
N∗

≤k(B(〈k.p〉)).
declare ops:bool; i:lcl ;

1. 〈k.p〉.saturating ⇐ true;
2. AddOp(k, p);
3. foreach i ∈ Sk do
4. if 〈k.p〉[i] �= 0 then FireEvents(k, p, i);
5. RemoveOp(k, p, ops);
6. if !ops then NodeSaturated(k, p);

FireEvents(in k:lvl , p:idx ,i:lcl)

Fire e on 〈k.p〉[i] when Nk
e (i) �= 0

declare e:evt; j:lcl ; f ,u:idx ; lock:bool;

1. foreach e ∈ Ek do
2. if Nk

e (i) �= 0
3. f ⇐ RecFire(e, k−1, 〈k.p〉[i]);
4. lock ⇐ true; if f �= 0 then
5. if lock then
6. Lock(〈k.p〉.dw); lock ⇐ false;
7. foreach j ∈ Nk

e (i) do
8. u ⇐ Union(k−1, f, 〈k.p〉[j]);
9. if u �=〈k.p〉[j] then

10. 〈k.p〉[j] ⇐ u; lock ⇐ true;
11. Unlock(〈k.p〉.dw);
12. FireEvents(k, p, j);

NodeSaturated(in k:lvl , p:idx)

Add 〈k.p〉 to UT [k]. Remove uparcs from 〈k.p〉.

declare ops,lock:bool; q:idx ; i:lcl; l:lvl;

1. q ⇐ p; Check(k, p);
2. if k=K then Terminate(); return;
3. l ⇐ k + 1; Lock(FC[k]);
4. Insert(FC[k], FCkey(k, q), p, true);
5. Unlock(FC[k]); lock ⇐ true;
6. while GetUpArc(k, p, r, i) do
7. if lock then
8. Lock(〈l.r〉.dw); lock ⇐ false;
9. u ⇐ Union(k, p, 〈l.r〉[i]);

10. if u �=〈l.r〉[i] then
11. 〈l.r〉[i] ⇐ u;
12. if 〈l.r〉.saturating then
13. Unlock(〈l.r〉.dw); lock ⇐ true;
14. FireEvents(l, r, i);
15. RemoveOp(l, r, ops);
16. if !ops then
17. if 〈l.r〉.saturating then
18. NodeSaturated(l, r);
19. else
20. QSaturate(l, r);
21. if q �= p; then delete 〈k.q〉;

RecFire(in e:evt,l:lvl ,q:idx ,p:idx ,i:lcl):idx

Build an MDD rooted at 〈l.s〉, in UT [l], encoding
N∗

≤l(Ne(B(〈l.q〉))).
declare L:set of lcl;
declare g,h,j:lcl ;
declare f ,u,s:idx ;
declare sat,ops:bool;

1. if l < Last(e) then return q;
2. Lock(FC[l]);
3. if Find(FC[l], {q, e}, s, sat) then
4. if !sat then foreach j ∈ N l

e(i) do
5. SetUpArc(l, s, p, j);
6. s ⇐ 0;
7. Unlock(FC[l]); return s;
8. s ⇐ NewNode(l, e, q);
9. foreach j ∈ N l

e(i) do
10. SetUpArc(l, s, p, j);
11. AddOp(l, s);
12. Insert(FC[l]{q, e}, s, false);
13. Unlock(FC[l])
14. L ⇐ Locals(e, l, q);
15. while L �= ∅ do
16. g ⇐ Pick(L);
17. f ⇐ RecFire(e, l−1, 〈l.q〉[g]);
18. if f �= 0 then
19. Lock(〈l.s〉.dw);
20. foreach h ∈ N l

e(g) do
21. u ⇐ Union(l−1, f, 〈l.s〉[h]);
22. if u �=〈l.s〉[h] then 〈l.s〉[h] ⇐ u;
23. Unlock(〈l.s〉.dw);
24. RemoveOp(l, s, ops); if !ops then
25. if DWarcs(l, s) then
26. QSaturate(l, s);
27. else Remove(l, s); s ⇐ 0;
28. s ⇐ 0; return s;

Remove(in k:lvl , p:idx)

Remove 〈k.p〉 and its uparcs.

declare ops:bool;l:lvl;
declare i:lcl ;q:idx ;

1. Lock(FC[k]);
2. Insert(FC[k], FCkey(k, p), 0, true);
3. Unlock(FC[k]);
4. l ⇐ k+1;
5. while GetUpArc(k, p, q, i) do
6. RemoveOp(l, q, ops);
7. if !ops then
8. if 〈l.q〉.saturating then
9. NodeSaturated(l, q);

10. else if DWarcs(l, q) then
11. QSaturate(l, q);
12. else Remove(l, q);
13. delete 〈k.p〉;

Fig. 1. Pseudo–code for the parallel node–saturation algorithm

facilitates tasks and removes mutual recursion, while light-shaded code shows
locks ensuring correct synchronisation. An MDD node is written as 〈k.p〉, where
k is the MDD level of the node and p is its unique index. The notation 〈k.p〉[i]
represents a downward arc from local state i. Information and locks on the node
are denoted by 〈k.p〉.information/lock. The MDD nodes are stored in k hash
tables, one per level, also called unique tables UT [k], 1 < k ≤ K where K is the

336 J. Ezekiel, G. Lüttgen, and R. Siminiceanu

Gen(in s:array[1..K] of lcl, nthr:int):idx

Create nthr threads. Build an MDD rooted at
〈K.root〉 encoding the state space and return
root, in UT [K].

Union(in k:lvl , p:idx , q:idx):idx

Build an MDD rooted at 〈k.s〉, in UT [k], encod-
ing the Union of 〈k.p〉 〈k.q〉. Return s.

DWarcs(in k:lvl , p:idx):bool

If 〈k.p〉[i] �= 0 for any local state at level k return
true otherwise return false;

SetUpArc(in k:lvl , p:idx , q:idx , i:lcl)

Lock (〈k.p〉.ua). Add an arc (q,i) to the end of
the list of upward arcs for 〈k.p〉; AddOp(k+1, q);
Unlock (〈k.p〉.ua);

GetUpArc(k:lvl,p:idx ,out q:idx ,i:lcl):bool

If the list of upward arcs is not empty retrieve and
remove (q,i) from head of list and return true.
Otherwise return false.

AddOp(in k:lvl, p:idx)

Add an operation to 〈k.p〉. Lock(〈k.p〉.ops). In-
crement 〈k.p〉.ops. Unlock(〈k.p〉.ops).

RemoveOp(in k:lvl , p:idx , out op:bool)

Remove operation from 〈k.p〉. Lock(〈k.p〉.ops).
Decrement 〈k.p〉.ops. If 〈k.p〉.ops = 0
set op to false otherwise set op to true.
Unlock(〈k.p〉.ops).

ThreadLoop()

If there are no items in the task queue sleep un-
til woken up. Otherwise remove the head item
(k, p) from the task queue. If (k, p) is (0,0) call
Terminate() and terminate the thread, other-
wise call Saturate(k, p).

Find(in tab, key, out v, sat:bool):bool,

If (key, x, y) is in hash table tab, set v to x and
sat to y and return true. Else, return false .

Insert(inout tab, in key, v , sat:bool)

If key is not (0, 0) insert (key, v , sat) in
hash table tab, if it does not contain an entry
(key, ·, true).

Locals(in e:evnt , k:lvl , p:idx):set of lcl

Return all of the local states in p locally enabling e.
If there are no states in p locally enabling e then
return ∅.

Pick(inout L:set of lcl):lcl

Remove and return an element from L.

NewNode(in k:lvl,e:evt ,q:idx):idx

Create 〈k.p〉 with arcs set to 0, set the key (e,q)
for 〈k.p〉, return p.

Check(in k:lvl , inout p:idx)

If 〈k.p〉, not in UT [k], duplicates 〈k.q〉, in UT [k],
delete 〈k.p〉 and set p to q. Else, insert 〈k.p〉 in
UT [k]. If 〈k.p〉[0] = · · · = 〈k.p〉[nk−1] = 0 or
1, delete 〈k.p〉 and set p to 0 or 1.

FCkey(in k:lvl , p:idx):key

Return the key for 〈k.p〉.

QSaturate(in k:lvl , p:idx)

Add item (k, p) to the task queue. Request any
sleeping threads wake up.

Terminate()

Add item (0, 0) to the task queue. Request any
sleeping threads wake up.

Fig. 2. Supporting function descriptions

height of the MDD. Work resulting from event firings is stored on a per level
basis in a cache, the firing cache (FC), i.e., FC[k], 1 < k ≤ K. The notation Sk

refers to the local state space at level k, Ek indicates events where the highest
level affected by the event is equal to k, and N refers to the next state function
where N k

e is the next state function with respect to the event e at level k.

Node Information: Each MDD node keeps track of the number of tasks that
are currently working on it or that will perform work on it in the future (via
upward arcs). The functions AddOp and RemoveOp allow current/pending task
operations to be added and removed from a node respectively. The saturation
status of the node is indicated by 〈k.p〉.saturating and determines if a node with
no remaining tasks is saturated from firing all events, or a newly created node
waiting to be saturated. Nodes created from event firings store a key to add to
the firing cache.

Can Saturation Be Parallelised? 337

Initialisation: Function Gen creates an initial MDD representing the initial
state set of the underlying system model and the threads in the thread pool.
Each thread calls ThreadLoop to synchronise on the task queue. Tasks are added
to the queue for the bottom nodes of the initial MDD.

Saturate: This function first indicates that the node has begun saturating by
setting saturating to true. Since the saturation task is being performed by a
thread, it registers the thread on the node via AddOp. It begins the process of
exhaustively firing events on the node by calling FireEvents for each non zero
state. Once it has fired the events the task is complete, and it calls RemoveOp.
The Saturate function allows the thread to check the status of the node to see
whether it is saturated. It can continue work on any nodes dependent upon the
node reaching a fixpoint.

FireEvents: This function checks whether an event is enabled in the state being
fired upon and calls RecFire to fire an enabled event. Successful firings result in
the node being updated with the work carried out by the firing. Any updated
nodes invoke a recursive call to FireEvents on the updated state.

RecFire: Uncompleted nodes discovered in the cache have upward arcs set from
them to the calling node via SetUpArc. For new work, a node is created setting
the FC key in the process. The thread registers with the new node and adds it
to the FC as a work request. Upward arcs are set to the calling node. RecFire is
recursively called to continue event firing then the thread de-registers from the
node. Nodes at the bottom of the MDD generated by the event firing are either
added to the task queue or removed if the event is disabled.

NodeSaturated: This function is called when a node is saturated. The node
is checked into the unique table. NodeSaturated updates nodes dependent upon
the saturated node via upward arcs, and allows the thread to continue working
on them. The termination condition occurs when this function is called for the
top level node.

We illustrate the parallel algorithm in Figs. 3 and 4 with an example for a thread
pool of two threads. The disjunctively partitioned transition relation, for four
events, is represented as an event matrix displayed in Fig. 3.a.

a) Gen generates the initial MDD. All nodes are marked as not saturating. None
of the nodes have an FC key (fc) since the nodes are not created from a RecFire
operation. Operations (op) is incremented for each upward arc set on a node.
Saturate tasks are added to the task queue for the bottom nodes of the MDD,
i.e., nodes 〈1.1〉 and 〈1.2〉. The sleeping threads are about to be woken by the
new tasks.
b) The threads have woken and removed the tasks from the queue. They both
call Saturate which marks each target node as saturating and increments op to
indicate they are currently being operated upon by the Saturate task.

338 J. Ezekiel, G. Lüttgen, and R. Siminiceanu

0 2 1

0 2 1

 1

0 2 1

0

0

0 2 1

op(0)
fc(0.0)
idx(1)

op(0)
fc(0.0)
idx(2)

op(2)
fc(0.0)
idx(1)

op(1)
fc(0.0)
idx(1)

1 sleep
2 sleep

1

1.1
ThreadsQueue

1.2

0 2 1

0 2 1

 1

0 2 1

0

0

0 2 1

op(1)
fc(0.0)
idx(1)

op(1)
fc(0.0)
idx(2)

op(2)
fc(0.0)
idx(1)

op(1)
fc(0.0)
idx(1)

1 1.1
2 1.2

1

ThreadsQueue

0 2 1

0 2 1

 1

0 2 1

0

0

0 2 1

op(1)
fc(0.0)
idx(1)

op(0)
fc(0.0)
idx(2)

op(2)
fc(0.0)
idx(1)

op(1)
fc(0.0)
idx(1)

1 1.1
2 1.2

1

ThreadsQueue

xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx

0 2 1

0 2 1

 1

0 2 1

0

0

0 2 1

op(0)
fc(0.0)
idx(1)

op(0)
fc(0.0)
idx(2)

op(1)
fc(0.0)
idx(1)

op(1)
fc(0.0)
idx(1)

1 1.1
2 sleep

ThreadsQueue

xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx

0 2 1

0 2 1

 1

0 2 1

0

0 2 1

op(0)
fc(0.0)
idx(1)

op(0)
fc(0.0)
idx(2)

op(0)
fc(0.0)
idx(1)

op(1)
fc(0.0)
idx(1)

1 sleep
2 sleep

ThreadsQueue

xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx

2.1

0 2 1

0 2 1

 1

0 2 1

0

0 2 1

op(0)
fc(0.0)
idx(1)

op(0)
fc(0.0)
idx(2)

op(1)
fc(0.0)
idx(1)

op(1)
fc(0.0)
idx(1)

ThreadsQueue

xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx

1 2,1
2 sleep

0 2 1

0 2 1

 1

0 2 1

0

0 2 1

op(0)
fc(0.0)
idx(1)

op(0)
fc(0.0)
idx(2)

op(1)
fc(0.0)
idx(1)

op(1)
fc(0.0)
idx(1)

ThreadsQueue

xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx

1 2,1
2 sleep

4 sleep

xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx

0 2 1

0 2 1

 1

0 2 1

0 2 1

op(0)
fc(0.0)
idx(1)

op(0)
fc(0.0)
idx(2)

op(0)
fc(0.0)
idx(1)

op(0)
fc(0.0)
idx(1)

ThreadsQueue

xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx

1 sleep
2 sleep

xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx

xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx

3.1

0 2 1

0 2 1

 1

0 2 1

0 2 1

op(0)
fc(0.0)
idx(1)

op(0)
fc(0.0)
idx(2)

op(0)
fc(0.0)
idx(1)

op(1)
fc(0.0)
idx(1)

ThreadsQueue

xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx

1 3.1
2 sleep

xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx

xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx

0 2 1
op(0)
fc(3.1)
idx(2)

not saturating
saturating
saturated

not saturating
saturating
saturated

not saturating
saturating
saturated

not saturating
saturating
saturated

not saturating
saturating
saturated

not saturating
saturating
saturated

not saturating
saturating
saturated

not saturating
saturating
saturated

not saturating
saturating
saturated

0-2
0-2 0-2

0-1

0-1
e1 e2 e3

Event Matrix

a) b) c)

d) e) f)

g) h) i)

2-1

e4
0-2

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1
2
3

Fig. 3. Parallel node-saturation algorithm example (Part 1)

c) Saturate(1,1) makes a local update on 〈1.1〉 by firing event e1. Saturate(1,2)
has completed since no events are enabled on 〈1.2〉 and has decremented op to
zero. Since op is zero, NodeSaturated is called which marks the node as saturated
and checks it into the unique table.
d) Saturate(1,1) has completed firing events and decremented op to zero, mark-
ing the node as saturated. NodeSaturated(1,2) removes the upward arc to 〈2.1〉
and replaces it with a downward arc, decrementing op for 〈2.1〉 in the process.
Since op is nonzero, NodeSaturated terminates leaving Thread 2 to sleep.
e) NodeSaturated(1,1) removes the upward arc to 〈2.1〉 and replaces it with a
downward arc and decrements the op for 〈2.1〉. Since op is now zero and the
node is not saturating, a new Saturate task is added to the task queue for 〈2.1〉.
NodeSaturated completes thus allowing the thread to return to sleep.
f) Thread 1 is woken up by the new task and removes it from the queue. It calls
Saturate(2,1) which increments op and marks 〈2.1〉 as saturating.
g) Saturate(2,1) makes an in-place update on 〈2.1〉 by firing e2 to set local state
2 to point to node 〈1.1〉.
h) Saturate(2,1) completes firing, decrements op and calls NodeSaturated which
replaces the upwards arc to 〈3.1〉 with a downward arc and decrements op. Since

Can Saturation Be Parallelised? 339

 1not saturating
saturating
saturated

0 2 1

0 2 1

 1

0 2 1

0 2 1

op(0)
fc(0.0)
idx(1)

op(0)
fc(0.0)
idx(2)

op(0)
fc(0.0)
idx(1)

op(2)
fc(0.0)
idx(1)

ThreadsQueue

xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx

1 3.1
2 sleep

xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx

xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx

0 2 1
op(1)
fc(3.1)
idx(2)

0 2 1
op(0)
fc(3.1)
idx(3)

1

 1not saturating
saturating
saturated

0 2 1

0 2 1

 1

0 2 1

0 2 1

op(0)
fc(0.0)
idx(1)

op(0)
fc(0.0)
idx(2)

op(0)
fc(0.0)
idx(1)

op(2)
fc(0.0)
idx(1)

ThreadsQueue

xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx

1 3.1
2 sleep

xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx

xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx

0 2 1
op(2)
fc(3.1)
idx(2)

0 2 1
op(1)
fc(3.1)
idx(3)

1

2

 1not saturating
saturating
saturated

0 2 1

0 2 1

 1

0 2 1

0 2 1

op(0)
fc(0.0)
idx(1)

op(0)
fc(0.0)
idx(2)

op(0)
fc(0.0)
idx(1)

op(2)
fc(0.0)
idx(1)

ThreadsQueue

xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx

1 3.1
2 sleep

xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx

xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx

0 2 1
op(2)
fc(3.1)
idx(2)

0 2 1
op(0)
fc(3.1)
idx(3)

1

2

1.3

 1not saturating
saturating
saturated

0 2 1

0 2 1

 1

0 2 1

0 2 1

op(0)
fc(0.0)
idx(1)

op(0)
fc(0.0)
idx(2)

op(0)
fc(0.0)
idx(1)

op(2)
fc(0.0)
idx(1)

ThreadsQueue

xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx

1 3.1
2 1.3

xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx

xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx

0 2 1
op(3)
fc(3.1)
idx(2)

0 2 1
op(1)
fc(3.1)
idx(3)

1

2

j) k)

l) m)

1

 1not saturating
saturating
saturated

0 2 1

0 2 1

 1

0 2 1

0 2 1

op(0)
fc(0.0)
idx(1)

op(0)
fc(0.0)
idx(2)

op(0)
fc(0.0)
idx(1)

op(2)
fc(0.0)
idx(1)

ThreadsQueue

xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx

1 3.1
2 1.3

xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx

xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx

0 2 1
op(2)
fc(3.1)
idx(2)

0 2 1
op(0)
fc(3.1)
idx(3)

1

2

n)

1

 1not saturating
saturating
saturated

0 2 1

0 2 1

 1

0 2 1

0 2 1

op(0)
fc(0.0)
idx(1)

op(0)
fc(0.0)
idx(2)

op(0)
fc(0.0)
idx(1)

op(1)
fc(0.0)
idx(1)

ThreadsQueue

xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx

1 sleep
2 1.3

xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx

xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx

0 2 1
op(0)
fc(3.1)
idx(2)

0 2 1
op(1)
fc(3.1)
idx(3)

1

o)

2.2

 1not saturating
saturating
saturated

0 2 1

0 2 1

 1

0 2 1

0 2 1

op(0)
fc(0.0)
idx(1)

op(0)
fc(0.0)
idx(2)

op(0)
fc(0.0)
idx(1)

op(1)
fc(0.0)
idx(1)

ThreadsQueue

xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx

1 2.2
2 sleep

xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx

xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx

0 2 1
op(1)
fc(3.1)
idx(2)

p)

1

 1not saturating
saturating
saturated

0 2 1

0 2 1

 1

0 2 1

0 2 1

op(0)
fc(0.0)
idx(1)

op(0)
fc(0.0)
idx(2)

op(0)
fc(0.0)
idx(1)

op(0)
fc(0.0)
idx(1)

ThreadsQueue

xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx

1 sleep
2 sleep

0 2 1
op(0)
fc(3.1)
idx(2)

q)

0.0

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

Fig. 4. Parallel node-saturation algorithm example (Part 2)

〈3.1〉 is not saturating and has no op, a task to Saturate 〈3.1〉 is added to the
queue. NodeSaturated terminates allowing Thread 1 to return to sleep.
i) Thread 1 is woken by the addition of the task to the queue. It calls Sat-
urate(3,1) which marks the node as saturating and increments op. RecFire is
called for event e3 which creates node 〈2.2〉 that contains an FC key fc(3.1).
j) RecFire increments op on 〈2.2〉 and sets an upward arc to 〈3.1〉 incrementing
op in the process. It recursively calls RecFire which creates node 〈1.1〉
k) RecFire increments op on 〈1.3〉 and sets an upward arc to 〈2.2〉 incrementing
op in the process.
l) RecFire sets a downward arc from 〈1.3〉 to terminal node 1 and terminates
decrementing op in the process. On termination, since op is zero and the node
is not saturating a task to Saturate 〈1.3〉 is added to the task queue.

340 J. Ezekiel, G. Lüttgen, and R. Siminiceanu

m) Thread 2 picks up the new task and calls Saturate(1,3) which marks the
node as saturating and increments op. Meanwhile, Thread 1 has continued with
RecFire and has discovered 〈1.3〉 as an unsaturated node in the firing cache,
while firing e3, which sets an upward arc to 〈2.2〉 and increments op.
n) Node 〈1.3〉 has completed saturating and decrements op to 0 and marks the
node as Saturated. Meanwhile, RecFire has completed on 〈2.2〉, decrementing
op, and Saturate continues on 〈3.1〉 by firing e4 to make a local update.
o) Saturate has completed on 〈3.1〉, decrementing op and returning Thread 1 to
sleep. Since op is greater than 0, the node is not yet saturated. NodeSaturated
has been called on 〈1.3〉 which has discovered the node is the same as node 〈1.2〉
while checking it into the unique table, and has removed the upward arcs, setting
the downward arcs to this node. Since op is 0, a Saturate task is added to the
queue for 〈2.2〉 and the thread goes to sleep.
p) Thread 1 takes the Saturate task for 〈2.2〉, setting the thread to saturating
and incrementing op.
q) Saturate completes on 〈2.2〉, decrementing op to zero and calling NodeSaturate
which replaces the upward arc to 〈3.1〉 with a downward arc and decrements op.
Since op is 0 and the node is saturating, node 〈3.1〉 is now Saturated. Since this
is the root node, Terminate is called which instructs the task queue to terminate
the threads. The final MDD representing the state space is shown.

0 2 1

0 2 1

 1

not saturating
saturating
saturated

0-1
e1

Event Matrix

a)

0-1

1

1

Saturate(2,1)

FireEvents(2,1,0)

RecFire(e1,1,1,1,0)

Saturate(1,2)

FireEvents(2,1,1)

NodeSaturated(1,2)

NodeSaturated(2,1) Saturate(2,1)

FireEvents(2,1,0)

RecFire(e1,1,1,1,0)

QSaturate(1,2)

FireEvents(2,1,1)

NodeSaturated(1,2)

NodeSaturated(2,1)

Saturate(1,2)

Saturate(2,1) FireEvents(2,1,0) RecFire(e1,1,1,1,0) Saturate(1,2) NodeSaturated(1,2) FireEvents(2,1,1) NodeSaturated(2,1)

Saturate(2,1) FireEvents(2,1,0) RecFire(e1,1,1,1,0) Saturate(1,2) NodeSaturated(1,2) FireEvents(2,1,1) NodeSaturated(2,1)

0

1

2

3 4

5

6 7 8

9 0

1

2 3

4

5

6 (Task Queue)

7

8 (Upward Arc)

9

Task Queue Upward Arc

b) c)

d)

e)

10

Fig. 5. The calling order of functions for the sequential and parallel algorithms

Correctness of the Algorithm

The algorithm in Fig. 1 can be expressed in terms of its sequential counter-
part. Removing the highlighted parallel code gives us the sequential algorithm
which is known to be correct [4]. Thus correctness of the parallel algorithm can
be shown by demonstrating that the parallel code allows our algorithm to ar-
rive at the same result and that locks prevent any data races. We can illustrate
the calling structure of both sequential and parallel saturation using the example
in Fig. 5a. The call graphs in Figs. 5b and 5c are the calling order of functions for

Can Saturation Be Parallelised? 341

the sequential and parallel code, respectively, where Fig. 5d and Fig. 5e further
simplify the order. Function calls in the sequential version are directly replaced
by the task queue and upward arcs in the parallel version. Since locks ensure
that updating the node is atomic, firing events exhaustively will result in the
same MDD shape for the saturated node as in the sequential version.

4 Experimental Results

We built a prototypical parallel algorithm using C and the POSIX Pthreads
library [13]. To evaluate the algorithm we measured several aspects of the al-
gorithms performance when utilising between one and four cores on a shared-
memory machine. For comparison we also measured the performance of a C
version of the sequential algorithm [4] on the same machine. The machine used
for evaluation is a dual-processor, dual-core machine with 2GB of memory and
Intel Xeon(TM) CPU 3.06GHz processors with 512kb cache sizes running Red-
hat Linux AS 4, Redhat kernel 2.6.9-22.ELsmp with glibc 2.3.4-2.13. We applied
the algorithm to Slotted Ring, Round Robin, Kanban, and a number of ran-
domly generated models. The state space sizes varied between approximately
1.69x1010 and 4.53x10158 states. The traditional models have been used previ-
ously to evaluate the sequential algorithm [4]. In our results we have classified
the event matrices by average density, i.e., the number of state updates within
an event relative to the width of a node, and by the average number of events
per level. Based on these properties we generated random models with a varying
number of randomly generated events with similar matrix characteristics to the
traditional models. Run times and relative memory against the sequential ver-
sion are shown in Table 1, where N is either the number of nodes in a Slotted
Ring network, the number of processes for the Round Robin protocol or the
tokens in the Kanban system, and where # is a number identifying a random
model.

Traditional Models: All of the results show speed-ups when running our par-
allel algorithm on four cores instead of one. The best parallelism is for a Kanban
model with an approximate 50% speed-up. Despite this, however, the algorithm
is still slower than the sequential version. It is most comparable to the sequential
version for the Round Robin model with only a slight decrease in run-time for
the highest value of N . The memory consumption of the parallel algorithm is
greater for all models, varying between up to 28 times for the Slotted Ring model
to less than 3 times for the Round Robin model.

Random Models: The results vary between speed-ups and slow-downs. The
majority of the models show speed-ups when running the parallel algorithm on
4 cores instead of 1 core, but remain slower than the sequential version. Model
9 shows a slow-down of approximately 30% when running on 4 cores instead

342 J. Ezekiel, G. Lüttgen, and R. Siminiceanu

Table 1. Experimental Results

Sequential 1 Core 2 Cores 3 Cores 4 Cores
Slotted Ring (Avg. Density 0.40 Avg. Events Per Level 3.00)
N time mem(b) time rmem time rmem time rmem time rmem
60 2.36 2002880 7.01 15.22 7.72 23.67 7.08 23.67 6.27 22.02
90 7.56 6109680 23.11 16.12 26.40 25.85 24.59 25.68 20.76 22.61

120 17.56 13726480 55.16 16.61 64.48 26.86 60.43 26.86 50.71 24.17
150 34.28 25933280 110.23 16.93 128.71 27.50 121.09 27.42 99.94 24.47
Random A (Avg. Density 0.40 Avg. Events Per Level 2.8)
time mem(b) time rmem time rmem time rmem time rmem
1 1.58 3665040 2.43 7.71 1.81 7.89 1.58 7.91 1.49 7.96
2 4.90 4603360 31.24 20.53 20.95 20.91 18.61 21.26 17.41 21.39
3 12.09 8927840 76.60 20.39 51.22 21.29 49.20 22.97 46.81 23.38
4 7.70 7813120 16.52 12.69 11.03 12.95 9.70 13.25 8.75 13.25

Round Robin (Avg. Density 0.19 Avg. Events Per Level 4.96-4.98)
N time mem(b) time rmem time rmem time rmem time rmem

150 6.03 86462784 10.98 2.26 7.64 2.26 7.71 2.26 7.75 2.26
180 12.26 147830244 21.44 2.27 14.39 2.27 14.59 2.26 14.69 2.26
210 23.51 232961304 38.89 2.27 25.21 2.27 25.65 2.27 25.74 2.27
240 41.73 345743964 65.89 2.27 41.88 2.27 42.32 2.27 42.55 2.27
Random B (Avg Density 0.20 Avg. Events Per Level 4.41-4.54)
time mem(b) time rmem time rmem time rmem time rmem
5 6.99 44951280 12.40 3.38 9.25 3.42 8.27 3.39 8.27 8.07
6 15.20 73501020 26.81 3.43 18.66 3.46 16.76 3.44 16.00 3.45
7 16.90 55277700 30.53 4.67 21.53 4.70 19.62 4.68 18.76 4.67
8 1.62 17186280 3.15 3.34 2.51 3.35 2.35 3.33 2.28 3.32

Kanban (Avg Density 1.67-1.82 Avg. Events Per Level 1.50)
N time mem(b) time rmem time rmem time rmem time rmem
15 0.64 1008188 1.15 2.74 0.71 3.02 0.70 3.56 0.70 4.70
20 2.85 3601728 5.98 2.77 3.52 3.05 3.34 4.19 3.32 5.32
25 10.08 9934868 22.91 2.80 12.79 3.22 12.31 4.77 12.27 6.65
30 29.73 23089108 73.24 2.83 39.96 3.36 37.32 5.33 36.65 6.74

Random C (Avg Density 1.74 Avg. Events Per Level 1.50)
time mem(b) time rmem time rmem time rmem time rmem
9 5.93 1378080 33.90 10.6 30.47 10.8 51.25 11.91 41.72 11.29

10 4.20 503440 5.33 7.65 3.11 7.76 2.50 7.90 2.32 8.00
11 7.02 874640 20.93 15.96 10.02 16.58 8.36 18.86 7.51 19.37
12 5.39 642640 10.43 10.54 6.03 10.92 4.78 10.65 4.17 10.60

of 1. Model 10 shows the best parallelism with a speed-up over 40%. Memory
consumption increases for the parallel algorithm on all models and varies between
approximately 5 and 25 times that of the sequential version.

Much of the extant research examines run-time, memory consumption and
direct measurements on the state space for evaluating parallel algorithms. Our
approach to evaluation is more thorough. We used several tools to evaluate the

Can Saturation Be Parallelised? 343

performance of our algorithm. We carefully selected our architecture in order to
allow Intel Threading Tools, that only support Intel chips, to be used on the al-
gorithm. Using the Thread Checker we verified that the locks were set correctly
to avoid data races and would not interfere with the results. Using the Thread
Profiler we obtained measurements of the parallel overheads, and how well the
cores were utilised by the algorithm. To investigate the parallel effect on the con-
struction of the state space we built a tool to visualise the MDD construction.
To evaluate any code overheads we used the GNU Profiler [7]. Combining these
tools with our results and direct measurements provided us with a great deal of
insight into the performance of our algorithm.

Overheads: The run-time results and memory are affected by the overheads in-
curred by the parallel algorithm. High overheads prevent the parallel algorithm
from competing with the sequential version. We saw two types of overhead, the
parallel overhead incurred by the introduction of locks and threads, and the code
overhead incurred by removing mutual recursion from the algorithm. The high-
est memory and run-time overhead comes from the use of upward arcs. Locks on
the data structure accounted for less than 10% of the overhead on all models.

Extra Work: The order in which events are fired affects the amount of work
the algorithm has to perform. Due to the dependencies between events, paral-
lel events are often fired on smaller state sets than the sequential version. This
creates more work and larger intermediate MDDs. The extra work can outweigh
the benefits of parallelism. It also introduces higher overheads.

Parallelism: The number of parallel events and how well this causes the work
to branch in parallel during construction affects the level of parallelism of the
algorithm. The lower the parallelism, the lower the number of parallel tasks to
perform. Low parallelism means cores are undersubscribed during construction.

We examined the event matrices as to whether overheads, extra work and
parallelism could be determined by their properties. We chose to classify our
models by properties that could influence parallelism. Our evaluation showed
that the factors which affect whether the algorithm showed speed-ups are more
complicated than the properties we chose. In order to determine how well a
model can be parallelised we also need to look at how event orderings influence
parallelism. Orderings can introduce spikes in performance between processors,
which has been seen before in explicit parallel model checking [11]. This effect is
greater in our algorithm since individual event firings produce larger state sets.

Our results are encouraging for models that have low overheads, are unaffected
by extra work and show good parallelism. The overheads incurred by parallelism
are too great, however, in order to show speed-ups over the sequential version.
Given that Saturation is orders of magnitude more time- and memory-efficient
than other symbolic algorithms [4], it would be difficult for our parallel algorithm
to further improve over the sequential version. When we incur several penalties

344 J. Ezekiel, G. Lüttgen, and R. Siminiceanu

from parallelisation such as extra work, code to remove mutual recursion and
parallel overheads, parallelism is likely to hinder rather than enhance the state-
space construction process.

5 Related Work

For explicit state space generators, the algorithm is normally the key consideration
for parallelisation [11]. For symbolic state-space generators, however, the complex
data structure for storing states often needs to be investigated [2, 8, 9, 10, 15, 16].
The extant research on symbolic model checking has focused primarily on net-
works of workstations (NOW). We can classify the symbolic parallelisation ap-
proaches into a number of categories, and show that the one into which our work
fits is unique from the previous work in this area.

Data Parallelisation (Memory): Most of the work on parallel symbolic state-
space generation considers only how to parallelise the data structure. These ap-
proaches target the increased memory available on NOW by slicing the data
structure and distributing it across processors of the NOW. The structure of
decision diagrams has previously been sliced horizontally [2] and vertically [10,
15, 16]. Horizontal slicing scales well but prevents the state-space generation
task from being speeded up, since each slice has to complete its work before the
next slice begins its work. Finding a good vertical slicing is a non-trivial issue
often leading to poor scalability. In order to facilitate scalability, load-balancing
techniques need to be employed. The most advanced work in this area uses work-
stealing techniques to distribute work dynamically [9].

Data and Algorithm Parallelisation (Memory/Time): Researchers have
parallelised symbolic state-space generation algorithms in order to gain speed-
ups from developing vertical slices on different processors of a NOW [8]. If the
algorithm developing the slices has to frequently synchronise on the application
of the imaging function, each round of computation is only as fast as the slowest
time it takes for a slice to develop on a processor. In order to achieve speed-ups
the research tackles the difficult task of removing the synchronous nature of the
algorithm. The parallel algorithm allows slices to develop asynchronously while
the imaging function is applied to create more work. The work is load-balanced
using the workstealing techniques developed in [9]. For very large circuits this
technique has proved to lead to a very efficient parallelisation showing up to an
order of magnitude improvement in time efficiency.

Utilising Idle Processors (Memory/Time): Recent work has also consid-
ered ways to utilise idle processors during state-space construction [1]. The idle
processors are used to perform and cache work that may be performed in future,
while a main processor develops the state space. If work that the main processor
requires has already been performed by another processor, the main processor
retrieves it from the cache. This reduces the peak size of the data structure

Can Saturation Be Parallelised? 345

during state-space construction and improves time efficiency if the amount of
utilised work performed by the idle processors is sufficient to overcome the over-
head of allocating work to the processors and synchronising on the cache.

Algorithm Parallelisation(Time): Our approach is unique in that we con-
sider how to parallelise only the algorithm itself. The primary goal is in improving
time efficiency by utilising the extra processing power. Parallel overheads are ad-
dressed while leaving the data structure whole during state-space construction.
A shared memory architecture is targeted in order to reduce the costs of syn-
chronisation. In contrast to most other work, with the exception of [11], we have
evaluated the performance characteristics of our parallel algorithm very carefully
by combining several evaluation tools and techniques.

In [11] a shared memory architecture is used to parallelise an explicit state-
space generation algorithm. The approach employs workstealing techniques in
order to load-balance. Many of the parallelisation overheads are addressed by
tailoring the parallelisation specifically to the selected architecture. The high
optimisation of the algorithm for the architecture allows the parallel algorithm
to overcome parallel overheads, showing good linear speed-ups for several models.

6 Conclusions and Future Work

We investigated whether the MDD-based Saturation algorithm for computing
reachable state spaces of asynchronous system models can be parallelised on
shared-memory architectures, such as multi-processor multi-core PCs. This is a
challenging question since symbolic state-space generation is an irregular task.

The idea for parallelising Saturation was to consider the firing of events on
a node as a task. Because Saturation is a mutual recursive algorithm, many
relatively lightweight tasks are created which cannot be managed efficiently by
the operating system. Instead, we implemented a task queue, which stores tasks
awaiting processing, ourselves. Available threads running on dedicated proces-
sors then collect work from this queue, thereby minimising processor idle time.
Our conceptual ideas and implementation strategy for the thread pool are not
specific to Saturation and reusable for implementations of other parallel algo-
rithms. We showed speed-ups for traditional models utilising four computing
cores over a single core of up to 50%. However, speed-ups over the original se-
quential version of Saturation depend very much on the specific model studied.

Future work shall proceed along three orthogonal directions. Firstly, we wish
to optimise our current implementation and explore heuristics for the order in
which tasks are taken out of the thread pool. This order does not affect the
correctness of our parallel algorithm but significantly its efficiency. Secondly,
it should be investigated whether our ideas can be combined with those of [2]
for efficiently parallelising Saturation for distributed-memory architectures, such
as PC clusters. Thirdly, other approaches to further exploiting modern parallel
computer architectures shall be explored, including the predictive firing of events
suggested in [1].

346 J. Ezekiel, G. Lüttgen, and R. Siminiceanu

References

[1] Chung, M.-Y. and Ciardo, G. A dynamic firing speculation to speedup distributed
symbolic state-space generation. In IPDPS. IEEE, 2006.

[2] Chung, M.-Y. and Ciardo, G. Saturation NOW. QEST, pp. 272–281, IEEE, 2004.
[3] Ciardo, G., Jones, R., Miner, A., and Siminiceanu, R. SMART: Stochastic model

analyzer for reliability and timing. Tools of Measurement, Modelling and Evalu-
ation of Computer-Communication Systems, pp. 29–34, 2001.

[4] Ciardo, G., Lüttgen, G., and Siminiceanu, R. Saturation: An efficient iteration
strategy for symbolic state-space generation. In TACAS, vol. 2031 of LNCS, pp.
328–342, 2001.

[5] Cimatti, A., Clarke, E. M., Giunchiglia, F., and Roveri, M. NUSMV: A new
symbolic model checker. STTT, 2(4):410–425, 2000.

[6] Clarke, E. M., Grumberg, O., and Peled, D. A. Model Checking. MIT, 1999.
[7] Graham, S. L., Kessler, P. B., and McKusick, M. K. gprof: A call graph execution

profiler (with retrospective). In Best of PLDI, pp. 49–57. ACM, 1982.
[8] Grumberg, O., Heyman, T., Ifergan, N., and Schuster, A. Achieving speedups in

distributed symbolic reachability analysis through asynchronous computation. In
CHARME, vol. 3725 of LNCS, pp. 129–145, 2005.

[9] Grumberg, O., Heyman, T., and Schuster, A. A work-efficient distributed algo-
rithm for reachability analysis. In CAV, vol. 2725 of LNCS, pp. 54–66, 2003.

[10] Heyman, T., Geist, D., Grumberg, O., and Schuster, A. Achieving scalability in
parallel reachability analysis of very large circuits. In CAV, vol. 1855 of LNCS,
pp. 20–35, 2000.

[11] Inggs, C. P. Parallel Model Checking On Shared Memory Architectures. PhD
thesis, University of Manchester, UK, 2004.

[12] Kam, T., Villa, T., Brayton, R., and S.-Vincentelli, A. L. Multi-valued decision
diagrams: Theory and applications. Multiple-Valued Logic, 4(1-2):9–62, 1998.

[13] Lewis, B. and Berg, D. J. Multithreaded programming with Pthreads. Prentice-
Hall, 1998.

[14] McMillan, K. L. Symbolic Model Checking. Kluwer, 1993.
[15] Milvang-Jensen, K. and Hu, A. J. BDDNOW: A parallel BDD package. In

FMCAD, vol. 1522 of LNCS, pp. 501–507, 1998.
[16] Stornetta, T. and Brewer, F. Implementation of an efficient parallel BDD package.

In DAC, pp. 641–644. ACM, 1996.

Distributed Colored Petri Net Model-Checking
with Cyclades

Christophe Pajault and Jean-François Pradat-Peyre

CEDRIC - CNAM Paris
292, rue St Martin, 75003 Paris

{christophe.pajault,peyre}@cnam.fr

Abstract. The major bottleneck of explicit model-checking tools is the
limited amount of available memory. Distributed model-checking is an
approach to tackle the combinatorial explosion problem. It consists in
taking advantage of the aggregate of memory provided by a network
of workstations to increase the amount of memory available for model-
checking.

Helena is the model-checker of the Quasar tool suite for concurrent
software verification. It is a high-level colored Petri net explicit sequen-
tial model-checker that implements several state-space reduction and
efficient state representation mechanisms. Helena is currently able to
verify safety properties. In this paper we present Cyclades, a distrib-
uted version of Helena , that remains compatible with these reduction
techniques. Several distribution mechanisms and some preliminary re-
sults are also provided.

1 Introduction

Concurrency introduces at the same time design facilities and reliability prob-
lems. Indeed, the interleaving of tasks execution leads to a high degree of con-
currency and may be the source of subtle mistakes that are difficult to detect
by simple simulations or human reasoning. Classically encountered problems are
deadlock, starvation or more generally race conditions on shared resources.

Software model checking is a very efficient technique to track these problems
since it can be fully automated and works directly at the program level. The
main difficulty is to combat the combinatorial explosion problem induced by the
interleaving between threads or processes. Four categories of techniques can be
used to efficiently tackle this phenomenon:

– program/model reductions: some parts of the program can be useless w.r.t.
the analyzed property; they can safety suppressed using a slicing approach
[Wei84]. Some abstractions can be made on the model[CGL92] or some se-
quential actions of the program or of the corresponding model (when an
equivalent model is built from the program for its analysis) may be merged
into an atomic one whose effect is the composition of the effects of these state-
ments. This transformation was initiated by Lipton [Lip75] with the notion

L. Brim et al. (Eds.): FMICS and PDMC 2006, LNCS 4346, pp. 347–361, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

348 C. Pajault and J.-F. Pradat-Peyre

of left and right movers, developed by several authors [CL98, FQ03b, FQ03a]
and explored in Petri nets formalisms in [Ber83], [PPP00] and in [HPP06].

– state graph reductions: when building the state graph, some techniques can
be applied on-the-fly in order to reduce the number of states that have to
be explored:

• some enabled actions may be forgotten since they lead to an already
visited state [GW93],

• some enabled actions may be safely delayed [Val93],
• some enabled actions may be executed simultaneously [VM97].

– states representation reduction: several techniques have been proposed to
store and represent the state space efficiently. Bit state hashing [Hol87] does
not store any state explicitly but maintains a vector of bits. This approach is
a probabilistic verification technique like the hash-compact method [WL93]
as it is does not consider the possible collision of state keys. The state collapse
method [Hol97] is an efficient state compression used to reduce the amount
of memory used per state. Another approach presented in [CKM01] propose
to define a measure of progress (when it is possible) to enable the deletion
of some useless states. BDD representations [McM93] can also be used but
these techniques seems not useful when dealing with software models.

– state space distribution: this technique consists in distributing the state space
among a cluster of workstations. The state space is thus divided in partitions.
Each partition is owned by a single node. Every time a node n explores a new
state s, it determines whether it is the owner of s or not. In the case when s
is the owner of s, the algorithm works like the sequential algorithm. In the
case when n is not the owner, it sends s to its owner and the works like s
was a fully expanded state. Such a depth first search algorithm is presented
in figure. 2.1.

Inside our software verification tool suite named Quasar [EKPPR03, EKP+05],
the model-checkerHelena implements the first three techniques presented above:
programslicing [Rou06] and static model reduction [EHPP04], on-the-fly graph re-
ductions [EP06], state representation reduction [EPP05]. To make a step beyond,
we decided to implement the fourth strategy: the state graph distribution. One of
the difficulties is to keep the benefit of others used techniques, in particular, the
one used for minimizing the state graph representation: the Δ marking method.

The paper is structured as follows. Cyclades is presented in section 2. The
adaptation of the Δ-marking method to a distributed environment is discussed
in section 3. Section 4 briefly presents some work done in the scope of distributed
model-checking while section 5 reports some experiments.

2 Cyclades: A Distributed Version of Helena

Helena [Eva05] is a high-level colored Petri net model-checker. It performs:

– static reduction of the net model: Pre and Post-agglomerations [PPP00]
[HPP06] that statically reduce the colored Petri net before model-checking.

Distributed Colored Petri Net Model-Checking with Cyclades 349

– partial-order reduction with stubborn sets computation [Val93]
– efficient storage and state representation with bit state hashing, hash-compact

and state collapse methods. Helena also proposes a new efficient storage
mechanism called Δ-marking[EPP05] which consists in storing a large set of
states in a non explicit way by storing only references to others states.

Helena is the model-checker of Quasar 1 [EKPPR03] which is a tool suite
for the analysis of concurrent programs. Quasar follows a four step process:

1. slicing: our slicer YasNost [Rou06] removes parts of the source code which
are not related to the investigated property

2. modeling: translation of the sliced code into a high-level Petri net
3. model-checking: analysis of the model with Helena
4. error-reporting: when the targeted property is not verified, the faulty se-

quence of actions is displayed.

We present here Cyclades, a distributed version of Helena and some prelim-
inary results. When parallelizing Helena , one of our objective was to keep the
three kinds of reductions available in a distributed environment.

Distribution of model-checking has no impact on static reductions as they are
computed before the model-checking process. Stubborn sets computation, on the
contrary, have to be modified as it uses the search stack which, in distributed
model-checking, is no longer globally maintained. We will not discuss distributed
partial-order computation in this paper as it is not yet implemented.

Then, distributed model-checking is not dependent on the internal state rep-
resentation and storage in almost all the cases. But, as Δ-marking represents a
state with a reference to one of its predecessors, problems could arise in distrib-
uted environment when the predecessor is not stored on the same node as the
given state. We will present some modifications of the Δ-marking for a distrib-
uted environment in section 3.

2.1 Basic Algorithm

The basic algorithm of Cyclades is presented in figure 2.1. The distributed
exploration is started by calling the START procedure on each node. Each node
gets its rank number with the GET RANK call. The node with rank equal to
manager works as the master node. This master node calls the MANAGER
function that computes the initial state and sends it to its owner. Then it waits
for incoming messages until termination is detected. The other nodes call the
WORKER function. This function consists in waiting for incoming messages.
When a state is received, a new depth-first search procedure is started, then
statistics used for termination detection are sent to the master node.

The DFS procedure works as follows: when a node n explores a new state s’,
the partition is calculated with the PARTITION function. If s′ does not belong
to n, it is sent to its owner and considered as visited by n.

1 http://quasar.cnam.fr/

http://quasar.cnam.fr/

350 C. Pajault and J.-F. Pradat-Peyre

start ()
1 Q ← ∅
2 V ← ∅
3 termination ← false
4 rank ← get rank()
5 if rank = manager then
6 manager()
7 else
8 worker()
9 end if

worker ()
1 while not termination do
2 Q ← Q ∪ receive()
3 if receive termination() then
4 termination ← true
5 else
6 while Q �= ∅ do
7 s ← pop(Q)
8 dfs(s)
9 end while
10 if no incoming message then
11 send(statistics,manager)
12 end if
13 end if
14 end while

manager ()
1 s0 ← initial()
2 owner ← partition(s0)
3 send(s0, owner)
4 while not termination do
5 //Statistics sent by workers
6 Q ← Q ∪ receive()
7 termination ← is terminated(Q)
8 end while
9 broadcast termination()

dfs (s)
1 if s /∈ V then
2 V ← V ∪ {s}
3 A ← enable(s)
4 for a ∈ A do
5 s′ ← next(s, a)
6 owner ← partition(s′)
7 if owner = rank then
8 dfs(s′)
9 else
10 send(s′, owner)
11 end if
12 end for
13 end if

Fig. 1. Distributed DFS search algorithm

2.2 Partition Function

The partition function has a key role in distributed model-checking as it is the
function that creates the state space partitions.

A first possible solution for the partition function is to use a simple hashing
function (for example, the internal hashing function) that is applied when a
state is stored in the state space. This solution, presented in [SD97] has been
implemented in Cyclades. Results presented in section 5 are really convincing
and show that the state space is divided evenly among the workstations even for
large models. However, this approach does not limit the number of generated
communications.

The number of communications is the direct result of the partition function.
Thus a good partition function is a function that limits the number of cross-
transitions, i.e. an action of the model that generates an arc in the state space
that links two states belonging to different partitions. Such an arc generates a
communication when it is explored.

A solution to limit the number of cross-transitions has been presented in
[LS99]. This solution is based on the observation that a global state of a system
S can be seen as a vector of local states of the p processes of S. Thus, instead of

Distributed Colored Petri Net Model-Checking with Cyclades 351

applying the partition function to the entire vector, a solution could be to limit
the partition function to a subset of the vector.

Let us consider the case when the chosen subset is reduced to a single process,
the cross transitions are just the actions that modify the state of the designated
process. Thus such a partition function results in a reduction of cross-transitions
and then communications.

A similar approach based on [KP04] has been implemented in Cyclades. A
global state of a Petri net is a set of markings corresponding to the markings of
each place of the net. To ensure a better locality and then reduce the number
of communications, the partition function does not depend on the whole set of
markings but on a subset of the places markings.

A good place subset for the partition function can be a subset describing a
process. Contrary to Promela specifications, it is hard to identify process in a
Petri nets. Thus we add the possibility for the user to specify the type of place
for each place of the net. It is then possible to statically determine the different
processes of the model. It is also possible in Helena to specify explicitly a subset
of places. However note that, even if it can be used independently, Cyclades is
the model-checker of the Quasar tool suite and then is executed on Petri nets
generated from a concurrent program. It is then easy, during modeling of the
Petri net to specify the process places.

Results present in section 5 show that this approach results in a visible re-
duction of communications. However choosing a good partition is not easy and
can, sometimes, result in a high load imbalance.

2.3 Reducing Communications

We present here two mechanisms used in Cyclades to reduce the number of
communications.

Message Buffering. The message buffering consists in sending several mes-
sages in a single communication. Considering k states that have to be sent to a
node n, instead of sending k messages, a single message containing the k states
can be sent to n. This solution efficiently reduces the number of communications.
Results presented in the section 5 show that this approach is particularly effi-
cient and reduces the verification time. However care must be taken with large
buffer sizes to avoid inactivity as message buffering delays the message sending.
Two approach have been implemented in the distributed version of Helena . A
simple timeout mechanism could achieve this goal: each sending buffer is coupled
with a timeout. When the timeout expires, the buffer is sent even if it has not
reached the maximal size.

A second less aggressive solution avoids the use of timeout. It consists in
sending a request when a node is idle. To avoid a broadcast of the request that
would generate a high number of communications and would lead to a network
overload, when a node ni is idle it sends a request to its neighbor ni+1. If ni+1
maintains a non-empty buffer for n, it sends the buffer otherwise it propagates
the request to its neighbor ni+2. In the case when the request is propagated

352 C. Pajault and J.-F. Pradat-Peyre

along the network back to ni, ni withdraw the request. This approach can lead
to a better message buffering as an incomplete buffer will not be sent until a
sending request is received.

We decided to use this last solution by default as it is the one that allows
a better message buffering, especially in the case of a good partitioning of the
state space.

State Caching. State caching is a technique to avoid the sending of redun-
dant messages. Considering a node n that sends a state s, n stores s in a local
cache. Thus, if s is explored again by n, it will not be sent again as it is in the
cache. Experiments made in section 5 show that state-caching results in a visible
diminution of messages and thus in a reduction of the execution time.

2.4 Construction of the Error Report

If an error is found during the state space exploration, Helena must produce a
trace of the sequence that leads to this error. In the sequential version, the trace
is simply built by traversing the search stack.

In the distributed version, the stack is no longer maintained as each node only
maintains a local search stack.

A first solution to this problem presented in [LS99] was implemented in Cy-
clades. It consists in sending the path p leading to s with the sent state s. Then
when a node detects an error it is able to rebuild the sequence of actions that
violates the property.

Another solution has been implemented in Cyclades. The idea is to reduce
the amount of memory used to store paths. For each state we store additional
information that will help rebuilding the sequence of actions. This additional
information is simply the address of the predecessor, the partition number of
the predecessor and the id of the transition that generates the state. Note that
this additional information has a fixed size.

Once an invalid state is explored, the node starts building the report by tra-
versing the local search stack. When the bottom of the stack is reached, if the
last state has a predecessor, a request is sent to the owner of this predecessor
together with the current report. When receiving such a request, a node starts
by getting the state stored at the given address then recalculates the enabling
set of the state for the given transition id. The transition color and the state
can then be added to the report. Then, if this state has a predecessor, the same
process is executed until the initial state is reached.

As a state can have more than one predecessor, it would be possible to have
more than one reference to a predecessor for each state. This solution would lead
to an excessive memory overhead. Another possible solution would be to update
the reference of the predecessor each time a predecessor with a smaller depth
is explored which would result in a minimal error report. However this solution
supposes that the depth of the predecessor should be stored and as maximal
search depth cannot be statically known, the amount of memory used to store

Distributed Colored Petri Net Model-Checking with Cyclades 353

the depth could not be fixed. That is the reason why we decided not to update
the predecessor of an already stored state.

The advantage of this approach is that the amount of memory used is re-
duced although the time used to build the report is increased but still negligible
compared to the exploration.

2.5 Detection of Termination

The detection of termination is computed by the master node. Each time a
worker node becomes idle, it sends a message to the manager with both its
number of received and sent messages. When the manager detects that the global
number of sent messages is equal to the number of received messages, termination
is detected and a termination message is broadcasted.

A node is said to be idle when it has no more states in its state queue and
no incoming message. These conditions are checked at line 6 and 10 of the
WORKER procedure of figure 2.1.

Compared to the solution presented in [LS99], we avoid the sending of busy
and idle messages used to notify the state of each node to the manager. It is
not necessary for the manager to know exactly which nodes are busy and idle,
it just has to know if at least one node is still working or will work. This is
done by checking the number of overall sent and received states. The key of our
algorithm is that a message is considered as received by a node when it has been
completely treated. Thus, when a node sends its number of sent and received
messages it is implicit that it is idle until it may receive a message. This solution
leads to a reduction of communications to detect termination.

3 Dealing with Δ-Markings

In colored Petri nets, as in many other formalisms, the transition relation is a
deterministic mechanism: the firing of a transition instance at a marking leads
to a single marking. On the basis of this determinism, we proposed to store
some markings of the reachability set in a non explicit way: instead of storing
the actual value of a marking m, we only store a reference to one of its prede-
cessors m′ and a transition instance (t, ct) whose execution leads from m′ to m.
Because of the determinism of the transition relation, this representation of m′

is unambiguous although it is not canonical since a marking may have several
predecessors. Markings stored in this manner are called Δ-markings and are said
to be stored symbolically while markings stored in the usual way are said to be
stored explicitly.

Storing a reference to a marking and a transition instance leads to better
state representations, especially when the modeled system exhibits large state
vectors. However, this representation presents a drawback: the test for checking
whether or not a marking m is new or not can be significantly slowed down.
This test usually entails comparing m to some marking(s) m′ stored in the

354 C. Pajault and J.-F. Pradat-Peyre

state space. The comparison can then be efficiently implemented by a bit vec-
tors comparison. When the reachability set contains Δ-markings, the opera-
tion is more complicated. Let us assume that we have a sequence of markings
m1, m2, . . . , mn = m′ such that m1 is stored explicitly and each mi �= m1 is
stored as a Δ-marking which points to mi−1 with the binding (ti−1, ci−1) such
that mi−1[(ti−1, ci−1)〉mi. The idea is then to backtrack to m1, and to apply
to it the firing of bindings sequence (t1, c1).(t2, c2) . . . (tn−1, cn−1) to have an
“explicit view” of m′. Once this operation realized, the comparison of m and m′

becomes straightforward.
We will call a reconstitution the operation which consists in finding the actual

value from a Δ encoding, and the sequence of transition bindings which enables
to reconstitute a marking will be called a reconstituting sequence. The principle
of the reconstitution mechanism can be illustrated with the help of Figure 2.
Let us suppose, for instance, that we have to reconstitute marking m. To do so,
we will first have to backtrack to m′. Since it is not stored explicitly, we will
then have to backtrack to m0 and finally apply to it the reconstituting sequence
(t′, c′).(t, c). This operation allows us to retrieve the actual value of marking m.

Depth
m0

m′
(t, c)

(t′, c′)

m

0

1

2

kδ

2.kδ

Explicit marking

Δ-marking

action firing

sequence firing

Δ-marking reference

Fig. 2. A state-space with Δ-marking

The distributed environment implies some modifications of the Δ-marking as
it represents a given state s′ with reference to one of its predecessor s. A problem
arises when s and s′ belong to different partitions.

A first solution is to modify the representation of the non-explicit marking.
The reference to the predecessor must take into account the localization (i.e.
the partition) of the state. Thus, s′ is represented by the transition color, the
reference to its predecessor s and the partition number owning s. When s′ has
to be reconstructed a request is sent to the owner of s which reconstructs s and
sends it back to the owner of s′ for the construction of s′. It is obvious that such a
solution would generate a lot of communications to reconstruct the Δ-markings.

Distributed Colored Petri Net Model-Checking with Cyclades 355

Another approach is to modify the algorithm such that each sent state s is
stored explicitly. Results presented in section 5 show that this solution does not
generate extra communications. However, the efficiency of the method decreases
as the number of nodes involved in the verification process increases (especially
in the case of a uniform partitioning). That is because the probability that a state
will be stored as a Δ-marking depends on the probability that a state belongs to
the partition of its predecessor. The efficiency of distributed Δ-marking depends
on the efficiency of the state space partition.

To increase the efficiency of distributed Δ−marking, let us consider the ex-
ample presented in figure 3: sj is a successor of si and sk is a successor of sj .
Consider now a node nI owner of the partition I and nII owner of the partition
II. In the basic case, both si, sj and sk will be stored explicitly. Inspired from
the children look-ahead mechanism, it could be interesting to store sj on nII in
order to store sk as a Δ-marking.

Children look-ahead was presented in [LV01]. The aim is to reduce the number
of messages. Look-ahead works as follow: when a state si is explored by a node n1
and has to be sent to a node n2, n1 explores all the successors sj of si. Each state
sj belonging to the partition of n1 is store on n1 and will not be sent back by n2
when exploring si. This approach results in some cases in a significant reduction
of communications but can sometimes lead to a runtime increase because states
may be explored several times.

However we reduced this runtime overhead in the case of a state space par-
titioning based on the net structure as we can identify cross-transitions. Then
only cross-transitions are relevant for the look-ahead computation as they are
the only ones that can lead to a state belonging to a different partition. Thus,
in the case of a structural partition, only cross-transitions are considered when
computing children look-ahead.

When combining distributed Δ-marking with children look-ahead, we consider
three cases:

1. considering sj stored on nII , sk has to be stored as an explicit marking,
2. sj is stored explicitly on nII and then sk can be stored as a Δ-marking,
3. sj and sk are both stored as Δ-markings on nII

It is clear that the first case will never result in a more efficient storage because
storing sj on nII will not result in Δ representation of sk.

Consider now the second case, when sj is stored explicitly on nII . A better
storage is obtained only when the storing sj explicitly and sk as a Δ-marking
will consume less memory than storing sk explicitly. In practice, we decided to
store sj on nII when at least two successors of sj belong to the partition II.

At least, it is obvious that in the last case, storing sj and sk on nII leads
to a more efficient storage than the basic mode. In that case, sj is stored on
nII as a Δ-marking and on nI as an explicit marking. Compared to the basic
mode, instead of 3 explicit markings, this solution leads to 2 explicit markings
and 2 Δ-markings and then to a reduction of the amount of memory needed for
storage.

356 C. Pajault and J.-F. Pradat-Peyre

Partition II

Partition I

si sk

sj

Fig. 3. A state-space with Δ-marking

This optimization yields good results especially with a partition function
based on the net structure as it is possible to identify the cross-transitions.
Thus only such transitions are used for the calculation of children look-ahead.

Moreover it is interesting to notice that the representation of a Δ-marking
is very similar to the solution used for error report when storing reference on a
predecessor. To build the error report no additional information is needed for
Δ-markings as their representation already have a reference to a predecessor and
the required informations. Thus, when using Δ-marking, only explicitly stored
states need additional information to build the error report.

4 Related Works

Several works on distributed and parallel model-checking have been proposed.
A distributed version of the Murϕ Verifier was presented in [SD97]. Based on

this work, a first distributed version of the SPIN model-checker, reduced to the
verification of safety properties, was proposed in [LS99]. The major innovation
was the way to partition the state space. Authors exploit the structure of the
state representation in SPIN to ensure a better degree of locality, i.e. a reduction
of communications. A new version, allowing the verification of LTL properties
was presented in [JBS01].

A very efficient model-checker for Petri net specification was presented in
[BH02]. However the approach presented computes backward firing which, in
our models is not always possible as it can lead to an infinity of markings.

In [GMS01], authors propose some algorithms for parallel state space con-
struction for labeled transition systems(LTS) obtain from languages such as
LOTOS.

All these approaches address exact and exhaustive verification issues. Another
work, based on a probabilistic verification was presented in [KMHK98]. This
approach performs a state enumeration with a low probability that some states
can be omitted. At last, distributed symbolic model-checking was presented in
[HGGS00].

5 Experiments

Evaluations were made on a cluster of computers with 512Mb of memory
and 2.6Ghz processor and 100Mb/s network. Cyclades uses Open MPI for

Distributed Colored Petri Net Model-Checking with Cyclades 357

communications. All communications are buffered and asynchronous. Cyclades
generates code written in C.

Table 1 presents the evaluation of the state space partition on the sieve of
Eratosthene example. The sieve of Eratosthene is used to find all primes inferior
to a number k. The column N represents the number of nodes used for model-
checking Min represents the minimal number of states stored on a node and
Max, the maximum of states stored on a node. Discrepancy presents the average
difference of stored states on each node compared to the ideal load balance, ie.
when each node stores an equal number of states. Then the Communications
column presents the total number of sent states during model-checking.

Table 1. State space partition - Sieve of Eratosthene (657 388 states/3 003 225 arcs)

N Min Max Discrepancy Communications
Partition based on the internal hashing function
5 164 321 164 356 15 2 875 027
10 72 673 73 269 240 3 003 226
Partition based on Petri net structure
5 110 378 218 487 38 696 593 707
10 49 534 89 558 29 060 2 389 351

We can see that the partition function based on the internal hashing function
results in an efficient load balancing, ie. the discrepancy is low, but generates a
high number of communications. This is because the probability that a successor
of a state s belongs to the partition of s tends to be 1/N . This probability is
increased when using a partition function based on the net structure but this
can lead to a high load imbalance.

As communications are very expensive compared to time spent for explo-
ration, we decided to use partition based on the Petri net structure for the next
experiments.

Table 2 presents some experiments made on three Petri net models. The first
column represents the number of node used for model-checking. The next column
reports the number of sent states and the execution time. Same evaluations with
the state caching method are reported in the third column. The average hit rate
in the state cache is also reported. All experiments were made with a partition
function based on the net structure. The message buffer size was set to 1000
bytes. The size of the state cache was set to 1Mb. For each model, the number
of states, arcs and the memory used to store the whole state space with the
sequential algorithm are also reported.

The first model is the Sieve of Erathostene used to calculate prime numbers
inferior to a number k. The next model is the database manager model which
represents a system with a set of k database managers which communicates to
maintain a consistent replica of a database. Then, the last model is a simple load
balancer model with C clients an S servers. All these models are available in the
Helena distribution.

358 C. Pajault and J.-F. Pradat-Peyre

Table 2. Time and communications evaluations on some Petri net models

N Basic algorithm Basic algorithm + State Caching
Comm. Time Comm. Time Hits

Database manager (k = 13 – 6 908 734 states – 55 269 890 arcs)
Memory used: 270.33 Mb.

1 0 317s –
3 29 760 709 530s 6 902 180 296s 76%
5 42 515 299 344s 19 247 071 212s 54%
7 46 766 829 228s 28 256 056 163s 39%

Sieve of Eratosthene (k = 43 – 3 957 786 states – 20 039 199 arcs)
Memory used: 226.85 Mb.

1 0 170s –
3 2 519 061 174s 1 952 760 128s 23%
5 2 519 061 119s 2 106 749 102s 15%
7 3 128 650 93s 3 032 356 88s 10%

Load balancer (C = 6, S = 5 – 11 682 018 states – 59 980 779 arcs)
Memory used: 367.77 Mb.

1 0 396s –
3 18 022 501 419s 8 352 421 355s 53%
5 27 033 751 309s 17 981 575 267s 32%
7 27 033 751 190s 21 049 147 168s 21%

A first conclusion concerns the cost of communications. As we can see, for each
model, using 3 nodes for verification (i.e. 2 working nodes and 1 manager) does
not lead to a speedup. However, using 2 or 4 more working nodes always results
in a reduction of the verification time except for the database manager model
with 4 working nodes. That is because the number of arcs is very high compared
to the number of nodes. As communications result from arcs, the database model
generates a lot of communications which slow down the exploration time.

We also notice that state caching always reduce the number of communications
with a direct impact on the execution time. Especially in the case when state
are often revisited as in the database manager model.

Table 3 presents the experiments of Cyclades with the Δ-marking storage
method enable. Experiments for the basic distributed Δ-marking algorithm and
for the algorithm with children look-ahead are presented. For each model, the
time execution and the total number of both explicit and Δ marking are reported.
The depth parameter of the Δ-marking algorithm was set to 10.

The optimization of the distributed Δ-marking algorithm performs a high
rate of Δ-markings (and so an efficient memory saving). Furthermore, the time
is reduced compared to the sequential algorithm. This is because the cost of
communications is compensated by the time needed for state reconstruction.

This optimization finally leads to a very efficient memory usage in a distrib-
uted environment. Note that the locality degree of the partition function has a
direct impact on the efficiency of the distributed Δ-marking algorithm.

Distributed Colored Petri Net Model-Checking with Cyclades 359

Table 3. Evaluations of the Δ-marking in a distributed environment

N Basic Algorithm Algorithm + Look-ahead
explicit Δ time explicit Δ time

Load balancer (1 232 262 states – 5 897 781 arcs)
1 123 207 1 109 055 73s – – –
5 223 548 1 008 714 41s 112 319 1 119 943 48s
7 227 643 1 004 619 24s 173 473 1 058 789 29s

Database manager (2 125 765 states – 15 588 960 arcs)
1 241 561 1 884 204 269s – – –
5 1 629 029 496 736 137s 1 046 920 1 078 845 159s
7 1 837 253 288 512 82s 1 379 173 746 592 93s

Eratosthene (3 957 786 states – 20 039 199 arcs)
1 395 781 3 562 005 610s – – –
5 383 242 3 574 544 280s 356 562 3 601 224 291s
7 340 824 3 568 528 211s 333 669 3 624 117 225s

6 Conclusion and Future Works

In this paper we have presented a preliminary version of Cyclades, a distrib-
uted high-level colored Petri net model-checker based on Helena . Experiments
show that we obtain a good memory repartition per node combined with a exe-
cution speedup as soon as the number of node is sufficient.

Moreover we have shown that some sophisticated state representation tech-
niques, such as Δ-marking, can be efficiently distributed without fundamental
modification of the sequential algorithm.

Experiments show that the execution time can be reduced when using efficient
model-checking methods, such as Δ-marking, that increase the calculation time.
Thus the communication time tends to be less important than the calculation time.

One of our future works is planned toward the computation of distributed
partial-order reductions as it is one of the most efficient reduction technique.
Moreover, as calculating the stubborn sets is time expensive, we can hope that
distributed model-checkingwill result in good speedups, especially when com-
bining stubborn sets computation with Δ-marking.

As Petri nets places invariants give informations about the behavior of the sys-
tem, we think that it will help selecting goodplace subsets for a more efficient struc-
tural partitioning. Part of our future works will thus investigate this possibility.

References

[Ber83] G. Berthelot. Transformation et analyse de réseaux de Petri, applications
aux protocoles. Thèse d’état, Université Pierre et Marie Curie, Paris,
1983.

[BH02] Alexander Bell and Boudewijn R. Haverkort. Sequential and distributed
model checking of petri net specifications. Electr. Notes Theor. Comput.
Sci., 68(4), 2002.

360 C. Pajault and J.-F. Pradat-Peyre

[CGL92] E. M. Clarke, O. Grumberg, and D. E. Long. Model checking and
abstraction. In POPL ’92: Proceedings of the 19th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pages
343–354, 1992.

[CKM01] S. Christensen, L.M. Kristensen, and T. Mailund. A Sweep-Line Method
for State Space Exploration. In Proc. of TACAS’01, volume 2031 of
LNCS, pages 450–464. Springer-Verlag, 2001.

[CL98] Ernie Cohen and Leslie Lamport. Reduction in TLA. In International
Conference on Concurrency Theory, pages 317–331, 1998.

[EHPP04] S. Evangelista, S. Haddad, and J.F. Pradat-Peyre. New coloured reduc-
tions for software validation. In Work. on Discrete Event Systems, 2004.

[EKP+05] S. Evangelista, C. Kaiser, C. Pajault, J. F. Pradat-Peyre, and
P. Rousseau. Dynamic tasks verification with quasar. In Reliable Soft-
ware Technologies - Ada-Europe 2005, volume 3555 of LNCS. Springer-
Verlag, 2005.

[EKPPR03] S. Evangelista, C. Kaiser, J. F. Pradat-Peyre, and P. Rousseau. Quasar:
a new tool for analysing concurrent programs. In Reliable Software Tech-
nologies - Ada-Europe 2003, volume 2655 of LNCS. Springer-Verlag, 2003.

[EP06] Sami Evangelista and Jean-Franois Peyre. On the computation of stub-
born sets of colored petri nets. In Proc. 27th Intl. Conf. on the Ap-
plication and Theory of Petri Nets and Other Models of Concurrency,
2006.

[EPP05] Sami Evangelista and Jean-François Pradat-Peyre. Memory efficient
state space storage in explicit software model checking. In Model Check-
ing Software: 12th International SPIN Workshop, volume 3639, page 43,
2005.

[Eva05] Sami Evangelista. High level petri nets analysis with helena. In ICATPN,
pages 455–464, 2005.

[FQ03a] Cormac Flanagan and Shaz Qadeer. Transactions for software model
checking. In Byron Cook, Scott Stoller, and Willem Visser, editors, Elec-
tronic Notes in Theoretical Computer Science, volume 89. Elsevier, 2003.

[FQ03b] Stephen N. Freund and Shaz Qadeer. Checking concise specifications for
multithreaded software. In FTfJP 03: Formal Techniques for Java-like
Programs, 2003.

[GMS01] Hubert Garavel, Radu Mateescu, and Irina Smarandache. Parallel state
space construction for model-checking. In SPIN ’01: Proceedings of the
8th international SPIN workshop on Model checking of software, pages
217–234. Springer-Verlag New York, Inc., 2001.

[GW93] Patrice Godefroid and Pierre Wolper. Using partial orders for the efficient
verification of deadlock freedom and safety properties. Form. Methods
Syst. Des., 2(2):149–164, 1993.

[HGGS00] Tamir Heyman, Daniel Geist, Orna Grumberg, and Assaf Schuster.
Achieving scalability in parallel reachability analysis of very large cir-
cuits. In CAV, pages 20–35, 2000.

[Hol87] Gerard J. Holzmann. On limits and possibilities of automated proto-
col analysis. In Proceedings of the IFIP WG6.1 Seventh International
Conference on Protocol Specification, Testing and Verification VII, pages
339–344. North-Holland, 1987.

[Hol97] Gerard J. Holzmann. State compression in SPIN: Recursive indexing
and compression training runs. In Proc. of the 3th International SPIN
Workshop, 1997.

Distributed Colored Petri Net Model-Checking with Cyclades 361

[HPP06] S. Haddad and J.-F. Pradat-Peyre. New efficient petri nets reductions for
parallel programs verification. Parallel Processing Letters, 16(1), 2006.
to appear.

[JBS01] L. Brim J. Barnat and J. Stŕıbrná. Distributed LTL model-checking
in SPIN. In Proceedings of the 8th international SPIN workshop on
Model checking of software, pages 200–216. Springer-Verlag New York,
Inc., 2001.

[KMHK98] William J. Knottenbelt, Mark Mestern, Peter G. Harrison, and Pieter S.
Kritzinger. Probability, parallelism and the state space exploration prob-
lem. In Computer Performance Evaluation (Tools), pages 165–179, 1998.

[KP04] L. M. Kristensen and L. Petrucci. An approach to distributed state space
exploration for coloured petri nets. In Proc. 25th Int. Conf. Application
and Theory of Petri Nets (ICATPN’2004), volume 3099, pages 474–483.
Springer-Verlag, 2004.

[Lip75] Richard J. Lipton. Reduction: a method of proving properties of parallel
programs. Commun. ACM, 18(12):717–721, 1975.

[LS99] Flavio Lerda and Riccardo Sisto. Distributed-memory model checking
with SPIN. In Proceedings of the 5th and 6th International SPIN Work-
shops on Theoretical and Practical Aspects of SPIN Model Checking,
pages 22–39. Springer-Verlag, 1999.

[LV01] Flavio Lerda and Willem Visser. Addressing dynamic issues of program
model checking. In SPIN ’01: Proceedings of the 8th international SPIN
workshop on Model checking of software, pages 80–102. Springer-Verlag
New York, Inc., 2001.

[McM93] Kenneth L. McMillan. Symbolic Model Checking. Kluwer Academic Pub-
lishers, Norwell, MA, USA, 1993.

[PPP00] D. Poitrenaud and J.F. Pradat-Peyre. Pre and post-agglomerations for
LTL model checking. In M. Nielsen and D Simpson, editors, High-level
Petri Nets, Theory and Application, number 1825 in LNCS, pages 387–
408. Springer-Verlag, 2000.

[Rou06] Pierre Rousseau. A new approach for concurrent program slicing. In
26th International Conference on Formal Techniques for Networked and
Distributed Systems, FORTE’06, Lecture Notes in Computer Science,
2006. to appear.

[SD97] Ulrich Stern and David L. Dill. Parallelizing the murphi verifier. In CAV
’97: Proceedings of the 9th International Conference on Computer Aided
Verification, pages 256–278, London, UK, 1997. Springer-Verlag.

[Val93] Antti Valmari. On-the-fly verification with stubborn sets. In Proceed-
ings of the 5th International Conference on Computer Aided Verification,
pages 397–408. Springer-Verlag, 1993.

[VM97] François Vernadat and François Michel. Covering step graph preserving
failure semantics. In Proceedings of the 18th International Conference on
Application and Theory of Petri Nets, pages 253–270. Springer-Verlag,
1997.

[Wei84] M. Weiser. Program slicing. IEEE Transactions on Software Engineering,
10(4):352–357, 1984.

[WL93] Pierre Wolper and Denis Leroy. Reliable hashing without collision de-
tection. In CAV, pages 59–70, 1993.

Author Index

Ábrahám, Erika 301

Barnat, Jǐŕı 316
Becker, Bernd 301
Bonakdarpour, Borzoo 261
Brim, Luboš 23, 84

Černá, Ivana 84
Clark, Allan 181
Cuijpers, P.J.L. 195

Ezekiel, Jonathan 331

Fecher, Harald 244
Fehnker, Ansgar 297
Fränzle, Martin 301
Fyukov, A.V. 195

Gilmore, Stephen 181

Hammer, Moritz 51
Helmstetter, C. 100
Herde, Christian 301
Hessel, Anders 116
Huuck, Ralf 297

Jayet, Patrick 297

Krause, Ben 293
Kulkarni, Sandeep S. 261

Lampka, Kai 35
Lussenburg, Michel 297
Lüttgen, Gerald 211, 331

Maillet-Contoz, L. 100
Maraninchi, F. 100

Mathijssen, Aad 165
Matoušek, P. 148
Moravec, Pavel 84, 316
Mühlberg, Jan Tobias 211

Pajault, Christophe 347
Pettersson, Paul 116
Pradat-Peyre, Jean-François 347
Pretorius, A. Johannes 165

Rauch, Felix 297
Řehák, V. 148
Řehák, Z. 148
Roy, Suman 227

Šafránek, D. 148
Saha, Indranil 227
Säıdi, Hassen 67
Schönborn, Jens 244
Schubert, Tobias 301
Siegle, Markus 35
Siminiceanu, Radu 331
Šimša, Jǐŕı 84
Slobodová, Anna 1
Smrčka, A. 148

Vojnar, T. 148

Wahls, Tim 293
Walter, Max 35
Weber, Michael 51
Willemse, Tim A.C. 132

Zhang, Wenhui 277

	Title page
	Preface
	Organization
	Table of Contents
	Challenges for Formal Verification in IndustrialSetting
	Introduction
	Our Approach to Formal Verification of FP Arithmetic
	FORTE System and STE
	Pre- and Post-condition Framework
	Managing the Size of BDDs
	Verification Methodology

	Verification of Fused Multiply-Add
	Floating-Point Multiply-Add
	Verification of Multiplier
	Verification of Adder and Rounder

	Debugging
	Our Impact on the Design Project
	Proof Management
	Summary

	Distributed Verification:Exploring the Power of Raw Computing Power
	Brute-Force in Distribute Verification
	Algorithms for Accepting Cycle Detection
	Maximal Accepting Predecessor (MAP)
	Eliminating Bad States (OWCTY)
	Maximal Number of Accepting Predecessors (NEGC)
	Back-Level Edges (BLEDGE)

	Comparing the Algorithms
	Conclusions

	An Easy-to-Use, Efficient Tool-Chain to Analyzethe Availability of TelecommunicationEquipment
	Introduction
	Tool Chain
	Model World
	OpenSESAME Input Model
	Properties of High-Level MRMs

	Symbolic Representation and Solution of MRMs
	Symbolic Representation of Low-Level Markov Reward Models
	Generating and Solving the Low-Level Markov Reward Model

	Case Study: Fault-Tolerant Adjunct Processor
	System Description
	Model Evaluation

	Conclusion

	“To Store or Not To Store” Reloaded:Reclaiming Memory on Demand
	Introduction
	Safe Lossy Hashing
	Selecting Victim States to Swap Out
	Single-Successor States

	Bloom-Filter Cache
	Implementation
	The Life-Cycle of States

	Speedups Through I/O Reduction
	Partitioning the Closed Set
	Hash Compaction
	Compression

	Results
	Related Work
	Conclusions

	Discovering Symmetries
	Introduction
	Motivating Application
	An Illustrative Example
	Defining Symmetry
	Generalized Invariance Groups
	Computing Symmetries
	Property-Based Permutations
	Exploiting Dependencies
	Refining Symmetries
	An Algorithm for Computing Symmetries

	Experimentation
	Discussion
	References

	On Combining Partial Order Reduction withFairness Assumptions
	Introduction
	Conclusion and Further Work
	Related Work
	Case Study: The MPEG Decoder System
	Conjoint Generation of Schedulings and Timings
	The SystemC Models We Consider
	Main Ideas
	The Temporal Constraints
	The Algorithm
	Elements for the Correctness of the Algorithm

	Relationships for Partial Order Reduction Techniques
	Representation of the SUTD
	Relationships
	Generation of Schedulings

	SystemC, Scheduling Problems, and Loose Timings
	The SystemC Scheduler
	Examples with Fixed Durations
	Examples with Loose Durations

	Introduction
	Partial Order Reduction Techniques for Scheduler-Independence
	The Hierarchy of TLM Models
	Contributions and Structure of the Paper

	Partial Order Reduction
	Behaviour Classes
	Paths with Infinitely Many Visible Transitions
	Process Fair Paths
	Weakly Fair Paths
	Strongly Fair Paths

	Applications
	Conclusions
	Appendix

	Model-Based Testing of a WAP Gateway:An Industrial Case-Study
	Introduction
	Wireless Application Protocol
	Abstraction for Test Case Generation
	Testing Model
	Test Environment Model
	Gateway Model

	Test Generation and Execution
	Test Criteria
	Test Generation
	Test Execution

	Conclusion

	Heuristics for ioco-Based Test-Based Modelling(Extended Abstract)
	Introduction
	Formal Testing Theory
	Test-Based Modelling
	Representing Models: Valid Suspension Automata
	Learning Hypothesis and Oracles
	Algorithm

	Heuristics
	Input Causality
	Penalty Functions
	Non-repetitive Quiescence
	Combining Heuristics

	Experimental Data: The Conference Protocol
	Experiments
	Analysis and Discussion

	Conclusion

	Verifying VHDL Designs with Multiple Clocks in SMV
	Introduction
	Conclusion
	Experiments
	Modelling Asynchronous Behaviour
	Critical Signal Paths and Critical Gates
	Extending All Critical Gates
	Extending Signal Paths

	Formalising a Hardware Design
	Preliminaries
	Transient Behaviour
	Synchronisation Between Two Clock Domains
	Digital Circuits Design in VHDL and SMV

	Related Work
	Our Contribution

	Verified Design of an Automated Parking Garage
	Introduction
	Operational Description
	Problem Description
	Conceptual System Design
	Architecture
	Hardware Abstraction Layer (HAL)
	Logical Layer (LL)
	Safety Layer (SL)

	Verified Design of the Safety Layer
	Informal Requirements
	Specification of Data Types
	Specification of Behaviour
	Reductions
	Formal Requirements and Verification

	Discussion
	Visualization
	Implementation

	Conclusion

	Evaluating Quality of Service for Service LevelAgreements
	Introduction
	Related Work
	Markovian Process Algebras
	Transient Analysis and Uniformisation
	Model Checking
	Sensitivity Analysis

	Case Study: Automotive Crash Scenario
	PEPA Model
	Rates Constants and Ranges
	Sensitivity Analysis for the Automotive Crash Scenario

	Relation to Model Checking
	Further Work
	Conclusions

	Simulation-Based Performance Analysis of aMedical Image-Processing Architecture
	Introduction
	Modeling the Image Transfer Engine
	Image Processing Graphs
	Basic Image Processing Algorithms
	Pipelining, Parallel Processing and Synchronization
	Scattering and Gathering
	Overlap Creation
	Connections Between Resources
	Resource Scheduling

	Results
	Measurements
	Simulations

	Conclusions

	Blasting Linux Code
	Introduction
	Programming Errors in OS Code
	Checking Memory Safety
	The I2O Use-After-Free Error
	Verification with a Temporal Safety Specification
	Verification Without a Temporal Safety Specification
	The Problem with Blast and Pointers
	Results

	Checking Locking Properties
	Issues with Blast
	Related Work
	Conclusions and Future Work

	A Finite State Modeling of AFDX Frame ManagementUsing Spin
	Introduction
	AFDX Frame Management
	Modeling of AFDX Design in UPPAAL
	Modifications of AFDX Design Suggested
	Further Improvement of the Frame Management Design

	Discrete Time in Promela and Spin
	Modeling Modified AFDX Frame Management Design in Promela
	Transmitting End-System
	Network Channel
	Receiving End-System

	Verification Results and Analysis
	Conclusion

	UML 2.0 State Machines:Complete Formal Semantics Via Core State Machines
	Introduction
	Informal Description of UML 2.0 State Machines
	Syntax of Core State Machines
	Formal Semantics of Core State Machines
	Embedding of UML 2.0 State Machines
	Conclusion

	Automated Incremental Synthesis of Timed Automata
	Introduction
	Related Work
	Contributions
	Preliminaries
	Metric Temporal Logic
	Timed Automata
	Region Automata

	Problem Statement
	Adding Bounded Response Properties with Maximal Nondeterminism
	Adding Bounded Response Properties Without Maximal Nondeterminism
	The Maximum Delay Problem in Timed Automata
	The Synthesis Algorithm

	Adding Interval-Bounded and Unbounded Response Properties
	Conclusion and Future Work

	SAT-Based Verification of LTL Formulas
	Introduction
	Propositional Linear Temporal Logic
	Semantics of LTL
	Bounded Semantics of LTL Formulas in NNF

	Encoding the Model in SAT-Formulas
	Encoding of LTL Formulas
	Encoding of LTL Formulas for Verification

	SAT-Based Verification
	A Case Study
	Verification Tool: VERBS
	Presentation of the Case

	Concluding Remarks

	jmle: A Tool for Executing JML SpecificationsVia Constraint Programming
	Introduction
	Implementation of jmle
	Example
	Conclusion

	Goanna—A Static Model Checker
	Introduction
	Technology
	Application
	Conclusion

	Parallel SAT Solving in Bounded Model Checking
	Introduction
	Bounded Model Checking
	Encoding Finite Transition Systems
	Satisfiability Checking
	Symmetries of BMC Problems
	Constraint Sharing and Replication
	Extension to Linear Hybrid Automata

	Parallel BMC
	Experimental Results
	Conclusions

	Parallel Algorithms for Finding SCCsin Implicitly Given Graphs
	Introduction
	Preliminaries
	List of Techniques
	Algorithms
	Experimental Evaluation
	Conclusion and Future Work

	Can Saturation Be Parallelised?
	Introduction
	Saturation
	Parallel Saturation
	Experimental Results
	Related Work
	Conclusions and Future Work

	Distributed Colored Petri Net Model-Checkingwith Cyclades
	Introduction
	Cyclades: A Distributed Version of Helena
	Basic Algorithm
	Partition Function
	Reducing Communications
	Construction of the Error Report
	Detection of Termination

	Dealing with Δ-Markings
	Related Works
	Experiments
	Conclusion and Future Works

	Author Index

